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Natural products (NPs) have been optimized in a very long natural selection process for optimal interactions
with biological macromolecules. NPs are therefore an excellent source of validated substructures for the
design of novel bioactive molecules. Various cheminformatics techniques can provide useful help in analyzing
NPs, and the results of such studies may be used with advantage in the drug discovery process. In the
present study we describe a method to calculate the natural product-likeness scoresa Bayesian measure
which allows for the determination of how molecules are similar to the structural space covered by natural
products. This score is shown to efficiently separate NPs from synthetic molecules in a cross-validation
experiment. Possible applications of the NP-likeness score are discussed and illustrated on several examples
including virtual screening, prioritization of compound libraries toward NP-likeness, and design of building
blocks for the synthesis of NP-like libraries.

INTRODUCTION

Natural products (NPs) are chemical entities produced by
living organisms. Of special interest for drug discovery is
the class of NPs defined as secondary metabolites, i.e.,
metabolites which are not directly necessary for host survival.
They are typically produced by organisms such as bacteria,
plants, or various marine invertebrates and are usually used
as “chemical warfare” to protect parent organisms from
predators or, on the other hand, used as a means of attack.
To efficiently fulfill this role the NPs have been optimized
in a very long natural selection process for optimal interac-
tions with biological macromolecules. NPs are therefore an
excellent source of validated substructures for the design of
new drugs.1 Indeed, many drugs in the current pharmacopeias
are NPs, and many others are of NP origin.2 In the
pharmaceutical industry we can witness presently a real
explosion of interest in NPs.3 After several years of decelera-
tion, caused by various reasons, most notably exaggerated
expectations in the novel drug discovery technologies, the
NPs are again the center of attention of the pharmaceutical
industry as a promising and reliable source of new bioactive
molecules. Several startups focusing entirely on NP-based
drug discovery have emerged,4 and traditional pharmaceutical
companies are increasing their investments in the natural
product-based drug discovery.

Structures of NPs have become also a new and welcome
source of inspiration for the design of combinatorial libraries.
It is a well-known fact that the first generation of combi-
natorial libraries, containing mostly large, hydrophobic
molecules with many rotatable bonds, was rather a disap-
pointment concerning their biological activity. But these
negative results also had a positive effect. Chemists learned
that not only the amount of molecules synthesized is
important but also their properties. This led to the re-

evaluation of combichem design strategies and the introduc-
tion of a concept of diversity oriented synthesis (DOS)5,6

focused on the replacement of “classical” flat aromatic
heterocyclic chemistry by small molecules with high skeletal-
and stereodiversity covering broad areas of structural space.
These are synthesized using highly branched synthesis
pathways in analogy to the highly branched biosynthesis
pathways of natural products.7 NPs with their high diversity
are indeed very well suited as a source of bioactive
substructures for the design of new types of combinatorial
libraries.8,9 In addition to diversity, however, NPs also have
another advantage. They contain numerous bioactive sub-
structures validated by nature’s long evolution. A biology-
oriented synthesis (BIOS) based on this fact has been
introduced recently.10 BIOS builds on a diversity created by
nature and aims at its local extension in areas of proven
biological relevance using as a starting point simplified core
structures of NPs.

In order to introduce the NP-like features into the design
of novel libraries the properties which are typical for NPs
need to be known. Several studies focused therefore on the
analysis of NPs from the cheminformatics point of view.
Henkel et al.11 was probably the first to analyze differences
in molecular properties and structural features between NPs
and synthetic molecules and found distinct differences (such
as the number of bridgehead atoms or the frequencies of
various functional groups). Stahura et al.12 identified a set
of descriptors which were able to distinguish NPs from
synthetic molecules based on their Shannon entropy. Schneider
with collaborators13,14 analyzed a set of NPs to identify
whether they contain novel scaffold architectures for potential
use in combinatorial chemistry. Several such scaffolds have
been identified which were not present in marketed drugs.
Feher and Schmidt15 compared the distribution of various
molecular properties among NPs, drugs, and molecules
originating from combinatorial chemistry, identifying the
number of chiral centers, the presence of aromatic rings, the
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degree of saturation, and the number of various heteroatoms
as being the most important. Koch et al.16 analyzed a large
database of NPs to study NP scaffolds by arranging them in
the form of a tree and used this information to navigate within
the scaffold universe to identify its interesting regions.
Analysis of property distribution of more than 130 000 NP
structures as well as identification of substructures typical
for particular classes of source organisms have been reported
by Ertl and Schuffenhauer.17 And finally Wetzel et al.18

discussed recently various approaches to analyze and chart
the chemical space covered by NPs.

Most authors agree that although the NPs differ also in
their global physicochemical properties (such as logP, polar
surface area, etc.) from synthetic molecules, the major
differences between these two classes of molecules are in
their structural characteristics, such as the number of aromatic
rings, stereocenters, and distribution of nitrogen and oxygen
atoms.

In the present study we perform a more detailed chem-
informatics analysis of structural features of a large collection
of NPs, focusing on identification of those substructures
which distinguish NPs from common synthetic molecules.
Based on this analysis a score has been developed which
may be used to assess the natural product-likeness of
individual molecules and whole compound libraries.

DEVELOPMENT OF NATURAL PRODUCT-LIKENESS
SCORE

With respect to the importance of NPs in the drug
discovery process discussed in the previous section, it would
be advantageous to have the possibility of comparing the
characteristics of studied molecules with those of NPs. A
similar measure, called drug-likeness,19,20 is used routinely
to assess the similarity of screened molecules to the known
drugs. Although there is no formal definition of drug-likeness
(different drug-likeness scores use a broad range of ap-
proaches to calculate it), this characteristic is generally
understood as a measure of how close is the molecule under
study to the area of chemical universe occupied by the
common drugs. Recently also a method to calculate metabolite-
likeness has been introduced21 to characterize the chemical
space covered by compounds involved in metabolic reactions
and also a method to calculate peptide-likeness as a measure
of “peptide flavor”22 which may be used by peptidomimetic
bioisosteric design. Analogically to these descriptors, we
define natural product-likeness simply as a measure of
similarity to the NP molecules.

Preparation of the Data. The largest commercially
available database of NP structures is the CRC Dictionary
of Natural Products (DNP).23 We used this database as a
source of reference NP molecules. Before actual substructure
analysis the molecules have been standardized by normal-
izing charges and by removing small disconnected fragments
(counterions, etc.). Structures having less than 6 atoms or
containing metals have also been removed. In the next step
all molecules have been deglycosylated (i.e., all sugar
substituents have been removed). The main role of sugar
moieties in NPs is to affect pharmacokinetic properties of
parent structures and make them more soluble.24 In many
cases sugar units do not affect the biological activity of
aglycon directly, although several notable exceptions to this

general rule exist. The presence of various sugar units is
therefore the most typical structural characteristic of NP
molecules. And because we did not want this feature to
surpass other more interesting structural elements of NPs,
particularly the structural characteristics of central scaffolds,
the sugar units have been removed before the actual
substructure analysis. The deglycosylation step preceding the
actual substructure processing parallels the strategy from our
previous study of NP scaffolds.16 For the removal of sugar
units we used a recursive deglycosylation procedure written
in Java. In this procedure sugar rings at the periphery of the
molecule have been identified and removed including also
the attached nonring substituents. The procedure was repeated
until no such sugar rings could be identified. In this step 1
to over 80 sugar units were removed from 21 670 molecules.
The NP database after deglycosylation contained 115 590
unique aglycons.

The characteristics of NPs have been compared with those
of synthetic molecules (SMs). For this purpose we selected
290 000 structures from the in-house collection of com-
mercially available synthetic compounds by representative
selection. These molecules represented in our comparative
analysis the currently available “synthetic organic chemistry”
space.

Figure 1. Distribution of calculated logP for natural products and
synthetic organic molecules.

Figure 2. Distribution of polar surface area for natural products
and synthetic organic molecules.
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The cheminformatics analysis and molecular processing
including molecule cleaning, normalization, calculation of
various molecular properties, and substructure analysis was
performed using the PipelinePilot25 and Molinspiration26

software. Additionally, several specialized modules (for
example recursive deglycosylation procedure or custom
fragmentation) have been written in-house in Java.

Development of the NP Score.As discussed already in
the Introduction, calculated global molecular properties differ
between NPs and SMs. As an example distribution of
calculated octanol-water partition coefficient (logP) and
topological polar surface area (TPSA)27 for NPs, deglyco-
sylated NPs, and SMs are shown in Figures 1 and 2. One
can see that NPs are generally more hydrophilic than SMs,
while the TPSA has a similar mean for the both sets but a
broader distribution for NPs. For structure-based character-
istics such as the number of aromatic atoms, the number of
stereocenters, or the number of oxygen and nitrogen atoms
in the molecule the differences are even more pronounced.17

For the development of the NP-likeness score, however,
we decided to use more complex structural features. One
can expect better separation between NPs and SMs by using
more specific substructures than relatively simple molecular
properties, and, what is even more important, the knowledge
about substructure features which are typical for NPs
resulting from this analysis may be used directly in the design
of novel NP-like molecules.

To characterize molecule structural features we used atom
centered fragments introduced by Bremser in 1978 as HOSE
codes to estimate molecule spectra.28 Under various names
(for example, atom environments, extended atoms, circular
substructures, or atom-centered fragments) this type of
substructure descriptors has been shown to be very useful
also in other areas of cheminformatics, including similarity
searching, estimation of molecular properties, or development
of models for bioactivity prediction.29-32 In addition to atom
centered fragments with two levels of neighbors we used in
this analysis also pairs of these fragments including informa-
tion about the number of bonds (up to 6) separating them.

Once a set of fragments for NPs and SMs is generated,
one has to use an appropriate measure to compare distribution
of fragments between these two sets. Willett et al. compared
various fragment weighting schemes for substructure analy-

sis.33 We used the score defined by eq 1, because it provided
the best results for the calculation of substituent drug-likeness
in our earlier study.34

In the equation nacti is the number of NPs which contain
fragment i, ninacti is the number of SMs which contain
fragmenti, nacttotal is the total number of NPs, and ninacttotal

is the total number of SMs in the training set. The
NP-likeness of the whole molecule is then simply calculated
as a sum of contributions of fragmentsfi in the molecule,
normalized relative to the molecule size. In principle, this is
an application of a naı¨ve Bayesian statistics, because
contributions of fragments are considered to be independent
of each other. The calculated score is typically in the range
from -5 to 5. The higher the score is, the higher the
probability is that the molecule is a NP. Distribution of the
score for the training sets of NPs and SMs as well as some
other data sets (see below) is shown in Figure 3.

Besides the naı¨ve Bayesian classifier a broad range of
techniques is available to separate two classes of objects.35

Popular in cheminformatics are, for example, support vector

Figure 3. Distribution of the NP-likeness score for various
molecular collections.

Figure 4. Enrichment plot obtained as an average of 5 cross-
validation runs: red- enrichment when using atom-centered HOSE
fragments and green- enrichment when using calculated properties
and simple substructure features.

Figure 5. ROC curve (for atom-centered fragments) obtained as
an average of 5 cross-validation runs. The area under the curve is
0.977.

fi ) log(nacti/ninacti * ninacttotal/nacttotal) (1)
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machines, neural networks, decision trees, or various cluster-
ing techniques. The major advantages of the approach we
used is that the method is not parametric, and, therefore, it
is not sensitive to overfitting as most other machine-learning
approaches are. Additionally, the Bayesian classifier can
directly identify particular substructure features responsible
for NP-likeness.

Validation of the Score. Before used in actual applica-
tions, the new NP-likeness score has to be validated. We
performed two types of validation experiments.

In the classical cross-validation study the data were
randomly divided into two halvesstraining and test sets,
respectively. The training set was used for development of
a classification model, and then the performance of the model
was evaluated by calculating scores for the molecules in the
test set and comparing them with the actual molecule class
(NP or SM). The resulted enrichment plot obtained as an
average of five cross-validation runs is shown in Figure 4.
For comparison we generated also a model by using
calculated molecular properties and simple structure char-
acteristics. We used those properties which have been shown
in previous studies to differ significantly between NPs and
SMsslogP, PSA, total number of non-hydrogen atoms,
number of oxygens and nitrogens, number of aromatic atoms,
number of potential stereocenters, and number of rotatable
bonds. The standard PipelinePilot Bayesian module was
applied to do the classification. The cross-validation enrich-
ment using this “simple properties” model is also shown in
Figure 4 and exhibits only slightly worse performance than
classification by HOSE fragments. A second statistical
measure we used to characterize the quality of our NP-
likeness model was a receiver operating characteristics
(ROC) curve. This curve is shown in Figure 5. The area
under the ROC curve (AOC) is 0.977. This number is the
probability that when an active and an inactive molecule are
selected randomly, the active molecule will have a higher

score than the inactive one. Both graphs document excellent
predictivity of the NP-likeness model based on HOSE
fragments. The enrichment in cross-validation mode shown
in Figure 4 is for the first 20% of data practically identical
with the ideal enrichment curve.

In the second validation experiment we selected those NP
structures from the in-house Novartis collection which were
not present in the Dictionary of Natural Products and
calculated the NP-likeness for these molecules. Distribution
of the resulting score is shown in Figure 3. This was a more
stringent test, because the Novartis NP collection contains
also the number of novel structural classes which are not
present in the DNP. Despite this, the method correctly
identified 93.9% of the structures as NPs by using the optimal
cutoff suggested by the ROC curve.

POSSIBLE APPLICATIONS OF NP-LIKENESS SCORE

An apparent application of NP-likeness score is its use in
virtual screening. Pharmaceutical companies are purchasing
regularly large number of samples to be screened in their
high-throughput screening factories. In addition to standard
criteria such as druglike properties, novelty, or no undesirable
substructures, the NP-likeness score may be used as a useful
prioritization factor to identify samples which should be
purchased and screened.

To evaluate the distribution of the NP-likeness score in
various compound collections, libraries from 24 commercial
compound providers have been downloaded from the ZINC
Web site.36 Additionally we included a set of marketed drugs
from the DrugBank.37 The distribution of NP-likeness for
all these collections is shown in Figure 3. While most of the
libraries contain typical synthetic molecules, some collections
contain also a portion of molecules with high NP-likeness.
As expected, the NP-likeness of common drugs from the
DrugBank is somewhere in the middle between NPs and

Figure 6. Example of structures from the MDPI collection38 with high calculated NP-likeness.
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SMs. Out of the commercial libraries studied, the MDPI
compound collection38 contained the largest portion of NP-
like molecules. MDPI is a very diverse library containing
samples collected from different academic sources, including
also a number of plant metabolites. The calculated NP-
likeness score can efficiently identify this type of molecule.
Examples of molecules from the MDPI database with the
highest NP-likeness score are shown in Figure 6.

We would like to point out here that the NP-likeness score
alone cannot be used as a criterion for the quality of a library,
neither it is possible to conclude from it anything about the
probability of bioactivity on a specific target of interest. The

calculated score is neither a measure of molecular diversity
(which can never be the property of an individual molecule,
but is always related to an ensemble of molecules). The NP-
likeness score is nothing more and nothing less than its names
tells ussit is a measure of an overall similarity with the
currently known NP structural space.

In the second application example we wanted to demon-
strate the applicability of the NP-likeness score for selection
of substructures to support combinatorial synthesis. A set
of common scaffolds (present in more than 20 molecules)
was extracted from the PubChem database.39 A scaffold is
defined here as a single ring or an assembly of fused, bridged,

Figure 7. Example of common scaffolds from the PubChem39 database having a high NP-likeness score.

Figure 8. Examples of substructures with high NP-likeness. The yellow disc represents the central atom of the fragment.
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or spiro rings. For these scaffolds the NP-likeness score was
calculated, and some high scoring examples are shown in
Figure 7. Of course, in the prospective application not
common scaffolds would be scored (which are probably all
IP covered), but structures from a proprietary compound
database or set of virtual scaffolds generated in silico40 and
then the best-scoring scaffolds would be purchased or
synthesized and used as a basis for production of novel, NP-
like combinatorial libraries.

Numerous other applications of the NP-likeness score in
the drug discovery process are possible. One can think, for
example, about a procedure for automatic evolutionary design
of molecules optimizing at the same time multiple properties
including bioavailability, ease of synthesis, novelty, and, of
course, NP-likeness. A list of substructure fragments with
the highest NP-likeness score (some examples are shown in
Figure 8) may be used by medicinal chemists directly as an
“idea generator” helping them to design novel NP-like
molecules.

CONCLUSIONS

The NP-likeness score described here is a useful measure
which can help to guide the design of new molecules toward
interesting regions of chemical space which have been
identified as “bioactive regions” by natural evolution. The
calculation of the NP-likeness score is simple; once a model
is available the calculation consists only of molecule
fragmentation, table lookup, and summation of fragment
contributions, so millions of molecules may be processed
easily. The calculation of NP-likeness is implemented at
Novartis as a Web service and is incorporated into several
standard processes including virtual screening, selection of
compound samples for purchasing, HTS hitlist triaging, and
library design.
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