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Bioactive molecules only contain a relatively limited number of unique ring types. To identify those ring
properties and structural characteristics that are necessary for biological activity, a large virtual library of
nearly 600 000 heteroaromatic scaffolds was created and characterized by calculated properties, including
structural features, bioavailability descriptors, and quantum chemical parameters. A self-organizing neural
network was used to cluster these scaffolds and to identify properties that best characterize bioactive ring
systems. The analysis shows that bioactivity is very sparsely distributed within the scaffold property and
structural space, forming only several relatively small, well-defined “bioactivity islands”. Various possible
applications of a large database of rings with calculated properties and bioactivity scores in the drug design
and discovery process are discussed, including virtual screening, support for the design of combinatorial
libraries, bioisosteric design, and scaffold hopping.

Introduction

Ring systems in molecules form a cornerstone of organic
chemistry and therefore also medicinal chemistry and the drug
discovery effort as a whole. Rings give molecules their basic
shape, determine whether molecules are rigid or flexible, and
keep substituents in their proper positions. In many bioactive
molecules, rings are directly involved in interactions with
receptors, either through heteroatoms forming hydrogen bonds
with appropriate protein residues or through hydrophobic
interactions. Global molecular characteristics important for the
bioavailability and fate of a molecule in an organism, such as
hydrophobicity or polarity, are also determined mainly by the
composition of rings. Electronic ring properties including
energies of frontier molecular orbitals, their distribution over
the ring core, and of course, atomic charges determine the
reactivity of a molecule, which in turn is responsible for its
metabolic stability and toxicity. And we should also not forget
the profound role of rings in cheminformatics, for example, in
the large effort to identify the most efficient ring perception
algorithms,1 the hotly discussed topic of the smallest set of the
smallest rings, and interesting theoretical challenges such as
aromaticity and tautomerism.2

Ring systems also play an important role in several techniques
used in modern medicinal chemistry. One example may be
combinatorial chemistry and parallel synthesis, where ring
systems are used as the central scaffolds of combinatorial
libraries. Another popular technique applied in the drug
discovery process is “scaffold hopping”3 where the goal is to
“jump” in chemistry space, i.e., to discover a new structure
starting from a known active compound via the modification
of the central core of this molecule.

Because of the importance of ring systems in the drug
discovery process, several publications exploring this topic have
appeared. Bemis and Murcko4 analyzed 5120 known drugs to
identify the most common scaffolds. They found 2506 different
scaffolds, but without regard to atom type, hybridization, and
bond order, half of the drugs in the database are described by

just the 32 most frequently occurring scaffolds. Several authors
tried to classify rings according to their characteristics. Gibson
et al.5 characterized a set of 100 aromatic rings by calculated
properties that were selected because of their potential involve-
ment in the molecular recognition of drug-receptor binding
interactions. Principal components generated from these proper-
ties correlated with the in vitro biological activity of ring systems
under study. Lipkus6 presented a method for organizing ring
systems based on their topology. Three simple descriptors that
characterize separate aspects of ring topology were used in the
study. This approach was applied to a database of 40 182
different rings that were derived from a comprehensive collec-
tion of rings extracted from the CAS registry. The study
concluded that the distribution of rings is not compact but
contains many significant voids. Lewell et al.7 described the
development of a drug rings database with a Web interface.
The database contains ring structures from both the corporate
collection and commercial databases characterized by several
descriptors. A database such as this may be used in lead
discovery programs where bioisosteric ring analogues are
sought. Bohl et al.8 discussed the use of shape-similarity methods
to identify ring systems that are structurally similar to, and
aligned with, a user-defined target ring system. This system can
be used to identify alternative scaffolds for the construction of
combinatorial libraries. Broughton and Watson9 suggested a
method to obtain heterocyclic ring systems suitable for use in
drug design and library design, with an emphasis on the selection
of systems with good adsorption, distribution, metabolism,
excretion, and toxicity (ADMET) properties. This has been
achieved by extraction of ring systems found in drugs that have
reached phase II or later stages of drug development and launch.
Principal components analysis of calculated ring properties has
been used to enable the visualization of the set of heterocycles
in a “useful chemical space”. The authors suggest that hetero-
cycles in successful drugs are more likely to have calculated
quantities associated with lower chemical reactivity. Wilkens
et al.10 described a recursive algorithm for rapidly identifying
all possible scaffolds within a set of compounds. Biological data
were coupled to scaffolds by the inclusion of activity histograms,
which indicate how the compounds in each scaffold class
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performed in previous high-throughput screening campaigns.
Koch et al.11 performed a scaffold analysis of a large collection
of natural products, arranging the scaffolds in a tree-like fashion.
Such an analysis, combined with annotations of biological origin
and pharmacological activity, highlights the regions of chemical
space explored by nature and provides guidance for the
development of natural product-like compound libraries.

Cheminformatics Analysis of Ring Systems in Bioactive
Molecules

The goal of the present study was to compare the properties
and composition of heteroaromatic ring systems that are present
in bioactive molecules with the properties of a large collection
of virtual ring systems in order to identify those properties that
are necessary for biological activity. The database of ring
systems derived in this process would also be a good basis for
various applications in the drug discovery process.

To identify ring systems typical for bioactive molecules, we
analyzed the ring distribution in three large sets of molecules,
namely, molecules with biological activity, average organic
molecules, and for comparison, a collection of natural products.
Bioactive molecules were obtained simply as a sum of structures
from the World Drug Index12 and MDDR database.13 The
“nondrug” molecules (imaging, radioprotective, or dental agents,
etc.) in these databases were not included. After this step the
bioactive set contained about 150 000 structures. We did not
make any attempt to classify molecules according to the type
of activity, target, etc.; therefore our definition of “biological
activity” is very general and actually covers all molecules
interacting with any of the known pharmaceutical targets. For
comparison, a database containing typical organic molecules
was generated from a collection of catalogues of various
commercial compound providers comprising more than 6 million
unique structures by selecting 150 000 molecules by a repre-
sentative selection procedure implemented in PipelinePilot.28

And finally, structures from the Dictionary of Natural Products14

were used for the analysis of natural products. All the data were
cleaned and normalized by removing molecules with apparent
valence errors, by removing organometallic structures, and
where possible, by neutralizing charges. All these three databases
were analyzed with respect to the presence or absence of rings,
and all identified ring systems (defined as assemblies of fused
and spiro rings and also including attached exocyclic multiple
bonds) were extracted. Throughout this article we refer to these
assemblies as ring systems and scaffolds interchangeably.

Results of the analyses are summarized in Table 1, where
the percentages of molecules in each of the particular data sets
containing at least one aliphatic ring, aromatic ring, and simple
aromatic scaffold (see below) are listed. The sum of structures
containing aromatic and aliphatic rings is not 100% because
one molecule may contain both aliphatic and aromatic rings.
The results prove that the chemistry of bioactive molecules is
clearly dominated by rings (96.7% of bioactive molecules
contain rings), mostly aromatic (75.6% of bioactive molecules

contain aromatic rings). The organic molecules have a similar
ring composition, although they contain slightly more aromatic
rings and fewer aliphatic rings than bioactive molecules. As
expected, the situation for natural products is different; most
structures in this class are based on aliphatic ring systems, and
only 37.9% of natural products contain aromatic rings.

In the following analysis we will focus the study of bioactive
molecules on the simple aromatic (SA) scaffolds. This is a subset
of aromatic scaffolds defined as fused conjugated ring systems
consisting of one to three simple five- or six-membered rings
(see Figure 1). Such fused aromatic systems are very common
in bioactive molecules; they are contained in 73.3% of molecules
in this data set. Although modern medicinal chemistry is trying
to slowly abandon the area of “flat” aromatic molecules, as may
be exemplified by introduction of diversity-oriented synthesis15

or by increasing interest in the chemistry of natural products,16

classical drug structures are still clearly dominated by aromatic
cores (see also Table 1), in some cases even inherited from the
first-generation drugs originating from aromatic organic dyes.17

The number of unique SA scaffolds found in bioactive
molecules, however, is surprisingly small. Only 780 SA
scaffolds were identified within 149 437 structures. Additionally,
216 of these scaffolds are singletons (present only once in the
entire bioactive collection). Only 10 such scaffolds are present
in more than 1% of bioactive molecules and 64 in more than
0.1%. The most common scaffolds of this type are shown in
Figure 2. Our results are consistent with the findings of Bemis
and Murcko4 about the relatively small number of unique rings
in bioactive molecules. Despite this, the low diversity of simple
aromatic scaffolds present in bioactive molecules is surprising.
Why is this so? One can think of various possible reasons: (1)
biological activity is limited to a very small portion of ring
space; (2) most of the aromatic heterocyclic rings are simply

Table 1. Summary of Ring Analysis Results for Common Organic
Molecules, Bioactive Molecules, and Natural Products

data set
any
ringa

aliphatic
ringa

aromatic
ringa SASa,b

organic molecules 94.8 41.0 80.6 78.5
bioactive molecules 96.7 65.2 75.6 73.3
natural products 91.3 73.2 37.9 36.3

a The number means percentage of molecules in the particular data set
containing at least one ring system of specified type.b SAS means simple
aromatic scaffold (see the text and Figure 1 for details).

Figure 1. Types of ring systems considered in this study. The eight
atom types used to construct the systems are shown at the bottom (see
the text for details).
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not synthetically accessible; (3) the entire ring universe is so
gigantic that the entire current synthetic effort is just scratching
its surface.

Construction of a Large Virtual Scaffold Library

To learn more about the reason for the relatively low diversity
of bioactive heteroaromatic scaffolds, we decided to construct
all SA scaffolds and to find out whether there is a difference in
properties between the subset of scaffolds found in bioactive
molecules and other scaffolds. We considered the 14 relatively
simple skeletons shown in Figure 1. The molecules were
constructed from eight basic atom types also shown in the Figure
1, including aromatic carbon, pyridine and pyrrole nitrogens,
oxygen, sulfur, and sp2 carbon with exocyclic carbonyl bond,
which is also a common component of drugs. When constructing
scaffolds, we applied several simple rules to exclude “too exotic”
systems, including limiting the maximum number of ring
heteroatoms to 4, limiting the number of exocyclic carbonyl
bonds to 2, and preventing systems with unstable bonds between
O, S, and NH atoms. The correctness of all the constructed
systems was checked with respect to valence rules so that any
of the generated rings systems may also exist, at least theoreti-
cally, as a stand-alone molecule.

We did not perform any normalization of tautomers. One of
the main goals of this study was to identify commercially
available molecules containing scaffolds with high bioactivity
potential, and we could not know in which tautomeric form
(which of course depends also on the particular substituent
pattern) the molecules (if existing) are stored in the commercial
databases. We therefore considered all possible tautomers.
Anyway, most of the tautomeric variability in druglike molecules
is caused by-OH and -NH2 substituents, which was not
applicable in our case. Since, in the scaffolds under investigation,
tautomeric variation was only possible because of ring N and
NH atoms (imidazole-type tautomerism), the number of possible
tautomers was not so high; only about 9% of the constructed
structures were duplicated tautomeric forms of the same basic
connectivity.

Another issue that needed to be addressed was aromaticity.
This is a rather controversial topic in cheminformatics, with

practically each software tool handling aromaticity in a different
manner and providing different answers to questions on whether
a particular system is aromatic or not, using often rather complex
algorithms.2 Additionally, aromaticity is a more quantitative than
qualitative property, so sometimes a single correct answer to
such a question is not even possible. The classical Hu¨ckel “4n
+ 2” rule can provide some guidance, but according to this
rule, 91 out of the 780 SA scaffolds found in bioactive molecules
are antiaromatic, with the most prominent examples being
phthalimide and phenothiazine, which form the basis for several
well-known drugs. We therefore decided to keep all systems in
our database independent of whether they formally fulfill the
“4n + 2” π electron rule or not. By using quantum chemical
descriptors (see below), we would expect to distinguish between
aromatic and antiaromatic systems, thus making this distinction
an outcome of the study rather than having to preempt a
particular aromaticity model.

All ring construction and molecule manipulation were done
by an in-house procedure written in Java based on a commercial
cheminformatics toolkit.18 All structures were manipulated and
then stored as SMILES strings.

The number of scaffolds created in this way was quite large,
totaling 580 165 (see Table 2). For comparison, the number of
scaffolds of different types also identified in bioactive molecules
and average organic molecules is shown. Overall, the average
scaffold size was 14 atoms and the average molecular weight
was 204.4.

To identify molecular characteristics that are typical for the
subset of SA scaffolds found in bioactive molecules, we needed
to characterize scaffolds by their calculated properties. We used
several global properties including calculated logP,22 polar
surface area,19 molecular weight, and number of atoms; simple
properties characterizing composition of the scaffolds (number
of heteroatoms of particular types, ratio of heteroatoms to carbon
atoms, etc.); and several quantum chemical parameters char-
acterizing electronic properties of the ring systems, including
energetic parameters, charges, energies of frontier molecular
orbitals, and atomic superdelocalizabilies23 (see Table 3 for a
complete list). To calculate quantum chemical parameters, 3D
molecular coordinates were created from SMILES representa-

Figure 2. Most common aromatic scaffolds present in bioactive molecules.
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tions using CORINA,20 a full geometry optimization was
performed using the AM1 method in the MOPAC package,21

and electronic parameters for the optimized geometry were
extracted. The following check was also implemented to ensure
that we are indeed getting parameters for the original structure.
The MOPAC output file containing the optimized structure was
converted to SMILES, and canonical forms of the original and
final SMILES were compared. Structures for which both
SMILES strings did not match (in most cases a ring opening
during the geometry optimization procedure occurred) were
subsequently discarded. Such a molecule breakdown happened
in about 0.7% of the compounds in the entire data set. In
practically all cases, the broken bond connected two nitrogen
atoms, one of them on the fusion of two rings. This procedure
helped to discard any potentially unstable molecules from the
database. On completion, 575 776 scaffolds created in silico
(780 active scaffolds have been removed from this set) were
obtained, all of which were characterized by around 40
calculated parameters.

Analysis of Scaffolds by Self-Organizing Neural Networks

One of our goals was to identify parameters that separate the
780 scaffolds present in the bioactive molecules from the other
scaffolds. On the basis of an initial visual analysis of the data,
we could see that for some properties (for example, global
molecular characteristics such as logP and some electronic
parameters) there is practically no separation between active
and inactive systems. For other parameters, however, one could
observe a distinct clustering of active systems into particular
regions of property space. Such a situation, when an observed
property depends on multiple parameters in a complex, nonlinear
way, is a typical case for the application of machine-learning
techniques. We decided to use self-organizing neural networks,
since we have good experience in applying this type of
classification for processing large data sets24 and because this
method also provides an intuitive feedback on the correspon-
dence between the input properties and the output.

The methodology of self-organizing neural networks (SONNs),
often also referred to as Kohonen networks, is well-known, and
a good textbook on this topic is available.25 We will therefore
provide only a basic description here. The main application area
of SONNs is the simplification of complex multidimensional
data. During the training process the original complex data
matrix (in our cases, scaffolds characterized by normalized
calculated properties) is processed and scaffolds are placed on
a two-dimensional map in such a way that scaffolds with similar
properties are located close to each other and dissimilar scaffolds

far away from each other. During training, no information about
the bioactivity of the scaffolds is used; this information is only
used at the end to calculate the “activity score” (ratio of active
to inactive scaffolds) for each cell and to color the final map
according to this score. This coloring allows visual assessment
of the quality of the classification.

For the calculation, we used an in-house implementation of
a self-organizing neural network protocol26 written in Java. Each
neuron consisted of multiple weights corresponding to particular
descriptors. We applied a network with 100× 100 neurons and
a toroidal architecture. This size was a good compromise
between the resolution of the resulting map and the computation
time. A larger network size would lead to a higher resolution
map (reducing the average number of compounds per neuron)
but would also considerably increase the computation time
because the data set contains almost 600 000 compounds (780
active and 575 776 “inactive”). In this setup each neuron initially
contained about 57 scaffolds. The training process, however,
redistributed scaffolds irregularly over the net, so at the end
some neurons contained several hundred very similar scaffolds,
while other neurons on the boundaries between dissimilar
regions of property and structural space remained empty.

The final network after 200 training iterations is shown on
Figure 3, where the ratio of “active” to “inactive” SA scaffolds
in the cells is color-coded. This analysis shows that biological
activity is very sparsely distributed in the chemical space,
forming only a limited number of small, well-defined “activity
islands”. Indeed, on the network map we can see six small areas
where a high concentration of active scaffolds is found.
Representative scaffolds from each of these islands are also
shown on the image.

As already mentioned, bioactivity depends on scaffold
properties in a complex, nonlinear way, and the interpre-
tation of this relationship is not straightforward. The general
definition of bioactivity we used is simply too “fuzzy” to be
described by a simple dependence on a property or combination
of properties. Visual analysis of layers of the trained network,
however, can provide some insight into the role of particular
properties in separating active and inactive scaffolds. As an

Table 2. Number of Various SA Scaffolds Generated in Silico and
Found in Existing Data Sets

scaffold typea virtual set organic moleculesb bioactivesc

5 66 41 36
6 134 55 34

55 1 672 53 30
65 7 793 289 229
66 8 300 145 107

555 17 244 1 1
565 54 781 42 18
655 68 633 39 20
656 63 395 107 56
665 196 404 215 142
666 161 743 157 107
all 580 165 1144 780

a See Figure 1 for definition of scaffold types.b 151 582 representative
molecules selected from vendor catalogues.c 149 437 bioactive molecules
from WDI and MDDR databases.

Table 3. Molecular Properties Calculated for the Scaffolds

MW molecular weight
natoms number of non-hydrogen atoms
logP calculated octanol-water partition coefficient22

PSA polar surface area19

nXa number of heteroatoms of this type
nON number of O and N atoms
nONS number of O, N, and S atoms
rXa ratio of the number of heteroatoms to C atoms
rON ratio of the number of O and N atoms to C atoms
rONS ratio of the number of O, N, and S atoms to C atoms
qXmax maximal charge on heavy atoms
qXmin minimal charge on heavy atoms
qXavrg average charge on heavy atoms
qHmax maximal charge on hydrogens
qHmin minimal charge on hydrogens
qHavrg average charge on hydrogens
seXmaxa maximal electrophilic superdelocalizability

on heteroatoms23

seXmina minimal electrophilic superdelocalizability
on heteroatoms23

HF heat of formation
EE electronic energy
CCR core-core repulsion energy
energy total energy
DM dipole moment
HOMO energy of the highest occupied molecular orbital
LUMO energy of the lowest unoccupied molecular orbital

a Three descriptors for O, N, and S atoms, respectively.
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example, three such layers are shown in Figure 4. When
comparing the distribution of weights in these layers with the
location of the active islands in Figure 3, one can see that the
distribution of weights for the number of atoms and the number
of N, O, and S atoms in scaffolds correspond well to the
distribution of bioactivity while the distribution of weights for
the dipole moment does not correspond to the bioactivity
distribution. To get additional insight into the importance of
various properties on bioactivity, we applied the Kolmogorov-
Smirnov statistical test to see the difference between the
distribution of particular properties for the “active” and “inac-
tive” cells. The properties identified as the most significant were
these characterizing the size of scaffolds (number of atoms,
molecular weight) and their composition (number of heteroatoms
of particular types), while classical global bioavailability proper-
ties (logP, PSA) were not so important. Electronic properties
(the total energy and energies of frontier molecular orbitals)
characterizing the stability of scaffolds and separating “classical”
Hückel aromatic systems from scaffolds that violate the 4n +
2 π-electron rule were also important, with bioactive regions
corresponding mostly to the former group. We need to keep in
mind, however, that such a reduction of the problem dimen-
sionality is only an approximation and practically all properties,
also including those considered less important, contribute to the
classification results. For example, although the size of the
scaffolds was identified as the most important parameter, with
smaller scaffolds being preferred, in the active regions scaffolds
consisting of three fused rings could also be found. In such cases
the larger scaffold size was compensated by other beneficial
properties.

Application of Results of the Scaffold Analysis in the
Drug Discovery Process

In the previous section we described the successful training
of a self-organizing neural network to distinguish between active
and inactive ring systems. As a result, a bioactivity score may
be obtained for each cell in the network as a ratio of active to
inactive scaffolds in this area of chemistry space. This score
characterizes the probability that the scaffolds (or molecules)
located in this cell will be biologically active. In the drug design
and discovery process, application possibilities of a large virtual
collection of scaffolds characterized by such a score are
numerous. We will discuss some examples here that have
already been successfully applied at Novartis.

An apparent application area of a large database of virtual
scaffolds with calculated bioactivity scores is in the purchasing
of molecules for screening. Pharmaceutical companies are
regularly buying large numbers of compounds from various
commercial providers to extend their in-house collections and
to feed high-throughput screening robots. These compounds are
selected on the basis of various criteria such as novelty relative
to the company collection, calculated properties, and various
bioactivity models. With advantage one can also include in this
process the targeted purchasing of molecules containing scaf-
folds with high calculated bioactivity scores that are not already
present (or which are underrepresented) in the company archive.
The virtual screening of the scaffolds for good ADME properties
does not make too much sense here because in the actual
screening samples the scaffolds will be decorated with substit-
uents that will mostly determine the ADME characteristics of
the molecules. However, the toxicity of these molecules is

Figure 3. Trained network showing several “activity islands” and representative scaffolds for these islands.

Figure 4. Network layers corresponding (from left to right) to the number of atoms, number of NOS atoms, and dipole moment. The first two
layers show good similarity with the distribution of bioactivity; the distribution of dipole moment weight is independent of bioactivity.
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another issue, and all scaffolds in our data set were virtually
screened using the Novartis in-house “In Silico Tox Check”
system,26 which focuses mainly on the identification of sub-
structures with putative carcinogenicity or mutagenecity. About
16% of rings constructed have been flagged as being potentially
toxic, and these scaffolds were therefore discarded from further
considerations.

Combinatorial chemistry and parallel synthesis are used
routinely in the drug discovery process to automate the
synthesize of large compound libraries. Central scaffolds are
selected on the basis of their diversity, druglike properties, or
match to a specific target. The calculated scaffold activity scores
can be used to build combichem libraries around novel scaffolds
with promising bioactivity potential.

Another possible application area is bioisosteric design, or
scaffold hopping.3 Generally this is a process where a target
scaffold is replaced by another, sometimes considerably struc-
tually different, scaffold having, however, similar properties.
This technique is often used to get molecules with better
bioavailability or selectivity and molecules that are easier to
synthesize or simply to replace patented structural features. A
large database of scaffolds characterized by important calculated
properties including bioactivity scores also provides a very good
basis for the development of tools for automatic bioisosteric
design. A Web tool that allows automatic identification of
bioisosteric substituents and scaffolds is available to Novartis
chemists on the company intranet.27

Last, the most challenging application of a database of virtual
bioactive scaffolds is not to select scaffolds from the pool of
existing compounds available for purchase but to identify and
actively try to develop new synthetic methods to prepare
molecules with novel active ring systems.

Conclusions

A large database of more than half a million of heteroaromatic
scaffolds containing from one to three fused rings was con-
structed and characterized by calculated parameters describing
their physicochemical properties and structural features. Self-
organizing neural networks were used to identify those areas
of structural and property space that are typical for scaffolds
found in bioactive molecules. Probably the most interesting
results of this study is a clear disproportion between a very
limited number of aromatic scaffolds found in a large collection
of bioactive molecules and the size of virtual scaffold space
that is huge, even in the case of relatively simple conjugated
scaffolds considered in this study. This clearly proves that the
size of structural chemistry space is enormous and that the entire
current synthetic effort is just scratching the surface. Another
interesting finding is the fact that the bioactivity scaffold space
is limited to several relatively small, well-defined “islands”. We
have to keep in mind, however, that this analysis is based only
on current knowledge, and it is quite possible that there are
also other active regions containing compounds that have not
been tested and, even more probably, not synthesized yet. The
most important properties responsible for separation of active
and inactive areas of chemical space seem to be size of the
scaffolds, their heteroatom composition, and their stability. Such
a large database of heteroaromatic scaffolds characterized by
calculated properties and by “bioactivity score” has numerous
application possibilities in the drug design and discovery
process.
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