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Classification methods for data sets of molecules according to their chemical structure were evaluated for
their biological relevance, including rule-based, scaffold-oriented classification methods and clustering based
on molecular descriptors. Three data sets resulting from uniformly determined in vitro biological profiling
experiments were classified according to their chemical structures, and the results were compared in a Pareto
analysis with the number of classes and their average spread in the profile space as two concurrent objectives
which were to be minimized. It has been found that no classification method is overall superior to all other
studied methods, but there is a general trend that rule-based, scaffold-oriented methods are the better choice
if classes with homogeneous biological activity are required, but a large number of clusters can be tolerated.
On the other hand, clustering based on chemical fingerprints is superior if fewer and larger classes are
required, and some loss of homogeneity in biological activity can be accepted.

INTRODUCTION

Partitioning sets of chemical objects into sets of structurally
related clusters is an important task in several stages of drug
discovery. There are two reasons for this. First, patents aim
to cover structural classes rather than cherry-picked indi-
vidual compounds, and thus, structural classes often coincide
with common patent protection. Second, structurally similar
compounds are known to also have similar biological activity
as it is stated by the similarity-property principle.1,2 Recently,
data from in vitro biological profiling has become available
in which a set of compounds is screened against a constant
panel of assays in such a way that a complete structure-
target IC50 matrix is created3 (www.cerep.fr). Using this data,
Fliri et al.4 showed that compounds exhibiting a similar
biological profile are often also structurally similar. Con-
versely, Barbosa and Horvath5 state that this is not generally
true, since a common absence of biological activity does not
require any structural similarity; even a common activity can
result from different modes of interaction between the ligand
and target. If structures are however detected as similar by
a biologically meaningful chemical descriptor, one should
expect them also to have a similar biological activity.

For this reason, classification by chemical structure should
yield classes with greater homogeneity in terms of biological
activity when compared with random partitioning of the data
set, as has been exemplified by Bo¨cker et al.6,7 In this paper,
we evaluate the extent to which different classification
methods fulfill this expectation on the basis of in vitro
bioactivity profile data. Including different structural repre-
sentations in the study, one can simultaneously evaluate the
potential of these representations for the identification of
similar biological activity in the absence of a common
scaffold (“scaffold hopping”)8,9 by comparing classification

results obtained with these representations with those ob-
tained from classification by scaffold. However, it is
recognized that, for practical selection purposes, medicinal
chemists may still prefer to sample two distinct scaffolds
even if they can be assumed to have similar biological
activity, because of different synthetic accessibility or
intellectual patent coverage issues. However, in case not all
scaffolds can be included in screening or followed up, it will
still be worthwhile to use bioactivity to select series having
the potential to cover a wide range of activity profiles.

One can distinguish two types of classification methods
for chemical structures. The first method uses a descriptor
vector as a representation of the chemical structure. Binary
descriptor vectors are also called fingerprints. These vector
descriptors can then be subjected to classification methods
that are well-established in multivariate statistics such as cell-
based partitioning or clustering.10 Often, these methods
involve some stochastic element, which means that different
runs with different random seeds or input sequences of the
structures could yield different results. In this type of
classification method, the assignment of each structure to a
class is dependent on the whole data set, and the further
addition of structures to this set can alter the classification
of structures already within the set. If the classification is
based on a descriptor derived from a systematic enumeration
of structural elements, as for example chemical fingerprints
are, then there is no a priori knowledge included in the
classification, except the generic descriptor calculation rules.
Dictionary-based fingerprints such as the MDL keys11 can
potentially contain prior knowledge encoded in the dictionary
of structural fragments.

The second type of classification methods is rule-based
and relies on expert knowledge to define rules for the
determination of structural features defining a chemical class.* Corresponding author e-mail: ansgar.schuffenhauer@novartis.com.
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In drug discovery, the most widespread such rule-based
system is classification by molecular frameworks (sometimes
also referred to as “Murcko-scaffolds”), which are obtained
when all terminal side chains are removed from a chemical
structure.12,13Such methods have the advantage that they are
deterministic and data-set-independent, with the latter prop-
erty sometimes being referred to as “crispness”. This is not
only an advantage in terms of computation speed, with a
linear scaling with the data set size, but also keeps the
classification intact when two data sets are merged. In
addition, each class is represented by a common, more or
less chemically intuitive, substructural feature representing
its “chemotype”.

The comparison of the classification algorithms is done
as follows: With quantitative, uniformly measured biological
profiling data, one can define the biological profile distance
between two compoundsi and j on the basis of the profile
vector of all assaysa:

Note that when compared as differences on the logarithmic
scale, theKi values can be substituted by IC50 values since,
according to Cheng and Prusoff,14 the Ki is essentially the
IC50 value multiplied by a factor that depends only on the
assay conditions, which on the logarithmic scale is a constant
increment being neutralized by forming the difference
between two log IC50 values measured under the same assay
conditions. The smaller aDi,j value is, the more similar is
the biological activity profile of the compoundsi and j.

According to Kelley et al.,15 a classification solution can
be judged by two objectives, one being the class spread: the
average distance of all compounds in a class, averaged again
over all classes. While Kelley et al. based the calculation of
the class spreads on the descriptor used in the clustering
procedure, we use the distance in the biological profile space
instead to calculate the cluster spread since this is the external
objective against which we wish to benchmark. Accordingly,
the spread spk of classk with nk members is defined as

Lowering the average of the spread spk in the biological
profile space over all classes is the first objective, and
lowering the number of partitions is the second. Both
objectives are clearly competing since, in the extreme
situation, where each member of the data set is assigned to
its own class, the lowest possible average spread is achieved,
whereas the completely unpartitioned data set is also optimal
in terms of the second objective but has the worst possible
spread. Kelley et al. combined both objectives in a single
function after applying normalization and gave both objec-
tives the same weight. If one wishes to avoid the prior

assignment of weights to multiple competing objectives, one
can use Pareto analysis16,17 to compare several solutions. In
a Pareto analysis, solutions are ranked according to their
dominance in all of the objectives as described in Figure
1a. One solution dominates another if it is superior in all
objectives: in our case, if it produces less classes and has a
smaller overall spread than another solution. In the case of
two solutions where one produces less classes and the other
has a lower overall class spread, these solutions have the
same rank. The set of nondominated solutions describes the
optimal tradeoff surface between the two objectives that may
be achieved. Most classification algorithms have parameters
which can control the tradeoff between the number of classes
and the class spread, and the result of each classification
procedure applied to the same data set can therefore be
described as a tradeoff surface in the Pareto space (Figure
1b).

As we evaluate the class spread in the biology profile
space, it is expected that the optimal solution can be achieved
when the profile data is itself used as a descriptor to cluster
the molecules. This information is however only available
retrospectively and cannot be used for structure-based
predictions, although it can serve as an ideal upper-bound
comparator. A more realistic upper-bound comparator taking
into account the error in biological profile measurement can
be estimated by adding normally distributed random noise

Di,j ) x ∑
a

assays

[∆log Ki(i, j, a)]2 )

x ∑
a

assays

[∆log IC50(i, j, a)]2 (1)

spk )
2

nk(nk - 1)
∑
i)1

ienk

∑
j)1

i<j

D(i, j) (2)

Figure 1. (a) Application of Pareto analysis to classification
solutions. Whenever one solution is superior to another solution in
all objectives, it dominates the other solution. A and B are
nondominated solutions, whereas solution A dominates solution C,
and all solutions A, B, and C dominate solution D. (b) Qualitative
illustration describing the Pareto analysis for chemical structure-
based partitioning in the profile space. The solution space is limited
by the tradeoff curves obtained for clustering using the activity
profile itself (dashed line) as the optimal solution and random
partition of the data (solid line). Chemical classification solutions
are expected to be found within this space. If a classification method
such as that represented by the circles is consistently dominated
by the solutions obtained with another method, it would be on the
whole inferior to this other method. On the other hand, the tradeoff
curves for two classification methods (such as that represented by
squares and triangles) may intersect, in which case it cannot be
claimed that one method is generally superior to the other.
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with a standard deviation that corresponds to the experimental
error of the pIC50 determination [typically, log(3)] to the
experimental profiling data for the purpose of clustering, but
evaluation of the cluster spread criterion is performed with
the original biological profiles. On the other hand, chemical
structure-based classification solutions are expected to be
superior to random partitions of the data set, and hence, the
random partitions serve as the lower benchmark. Any tradeoff
surface for a chemical structure-based classification is
expected to lie in between these two comparator curves.

It is important to consider that the Kelley function was
originally devised to select within a cluster hierarchy tree
the solution which offers the best tradeoff between cluster
spread and number of clusters. We are interested in compar-
ing two alternative classification methods with each other,
and therefore, it is to be expected that different classification
methods will produce different class size distributions, and
in particular a different number of singletons (classes
containing only one member). Therefore, a metric that
includes all classes is desirable also to take into account the
singletons in the calculation of both objectives instead of
omitting them completely as is the case with the original
Kelley function. Their spread value was set to zero. If this
is done, the simple, nonweighted average over all the class
spreads spk favors unduly methods which split off a larger
number of singletons and retain otherwise some large classes
as opposed to methods that produce more equally sized
classes. In the extreme case, one arbitrary data point removed
from a large data set to form a singleton will reduce the
nonweighted average spread by half, since the singleton has
a spread of zero and the spread of the remaining class will
be almost the same one as that of the whole set. To avoid
this scenario, we decided to use a weighted average spread
SP in our Pareto analysis where the class spreads spk are
weighted according to the size of the clusternk according to
the following equation, withnclassesbeing the total number
of classes andN the number of structures in the data set:

With this, we have a method that compares how well
alternative classification methods fulfill the objective of
producing classes with compounds that have a similar
biological profile. When two classification methods produce
solutions fulfilling the objectives equally well, it is of interest
if they are classifying the data in a similar way. For this
purpose, the adjusted Rand index as described by Hubert
and Arabie18 can be used: it describes the probability that a
pair of objects is either in both classification solutions in
the same class or in both solutions in a different class,
adjusted by the coincidence of classification which can be
expected to occur randomly. The adjusted Rand indexR is
calculated on the basis of the contingency matrix of two
classification solutions with the elementsnij as follows:

In cases whereR ) 1, the classification solutions are
identical, whereas in the case ofR) 0, there is only as much
overlap between the classes as there can be expected to occur
randomly.

For the clustering methods, we used several descriptors,
including those that are both conformation-independent and
-dependent. The conformation-independent descriptors
included chemical fingerprints such as in the UNITY
fingerprints (www.tripos.com), which are based on linear
connection paths, and the Pipeline Pilot FCFP_4 fingerprints
(www.scitegic.com) based on circular substructures which
have shown to be highly effective in chemical similarity
searching.19 In addition, we used numerical descriptors
embodied as Similog keys,20 based on an occurrence count
vector of graph-distance-based pharmacophore triplets, as
well as a vector of computed physical chemical properties
comprising molecular weight; logP; polar surface area; and
the numbers of rotatable bonds, hydrogen bond donors, and
acceptors. As conformation-dependent descriptors (3D de-
scriptors) we used feature point pharmacophores (FEPOPS),21

in which each structure is reduced to a central four-point
pharmacophore, and radial distribution functions (RDFs)22

encoding atomic charge and the interatom distance distribu-
tion. As in the original literature described for the FEPOPS
descriptors, the seven most diverse conformers are used,
whereas the RDF codes are based on a single conformation
as generated by the Corina23 program.

Numerous clustering methods were also applied. The
divisive K-means (DivKM) clustering procedure7,24 is used
throughout and is known to be very efficient on large data
sets. In addition, other clustering or partitioning techniques
were used in combination with some of the descriptors to
cover methods that are frequently used in the use-case
scenarios of the individual descriptors. Self-organizing
maps22,25 (SOMs) were used in combination with the RDF
descriptors. The clustering method implemented in the
Pipeline Pilot software, based on the OptiSim algorithm26

(PPClust), is used in combination with both FCFP_4 and
UNITY fingerprints as well as FEPOPS. Since a cell-based
partitioning founded on the principal components (PCs) of
physical chemical properties has been popular in the selection
of compounds,27-29 we included this as well in combination
with the physical chemical properties. Cell-based partitioning
using principal components (PCA_CELL) also has the
advantage that it is deterministic, although still data-set-
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dependent. As rule-based classification, we grouped the
compounds according to their molecular framework,12 ob-
tained by removing all terminal side chains, as well as the
frameworks derived from these when either the atom-type
information or the bond-type information or both together
are discarded.30 Further abstraction can be reached by
grouping the scaffolds according to their scaffold identifica-
tion and naming system (SCINS) code, which contains only
the main features of each scaffold (see the appendix). This
cascade of abstractions will be referred to as the “framework
hierarchy”.

As an alternative way to group scaffolds, we used a
hierarchical classification of scaffolds based on the priori-
tization of the rings contained in them (Scaffold Tree). In
this procedure, rings are removed iteratively from each
molecular framework according to prioritization rules, and
the scaffolds leading to the same remaining subscaffold are

grouped together.31 The main principle (consistent with the
way of thinking of chemists) is to remove peripheral, linked,
or heteroatom-deficient rings first and retain central, het-
eroatom-rich, fused rings as a “parent core”. This has the
effect that scaffolds which share the same core but have
different cyclic substituents can be recognized as related
scaffolds, which would not be possible using the flat
partitioning according to the substituent-pruned scaffold. This
method is an enhanced version of an approach used for the
hierarchical classification of natural products published by
Koch et al.32 but does not use the information about the
frequency of occurrence of scaffolds in the data set any more
as a decision criterion and is therefore no more data-set-
dependent. The two different ways of rule-based abstraction
are illustrated in Figure 2.

The requirement for having a complete compound IC50

value matrix measured on a uniform assay panel without

Figure 2. Abstractions of a structure out of the NCI cancer database. Both abstractions shown rely on the molecular framework obtained
by pruning all terminal side chains. The scaffold is further generalized by removing atom- and/or bond-type information and, finally, by
describing it through the SCINS code (“framework hierarchy”). The Scaffold Tree method generalizes the scaffold by the iterative removal
of rings according to prioritization rules. The most prominent rule is to reduce the number of linkage bonds, and therefore, the two linked
monocycles are removed first. A second rule with lower priority aims to retain a maximum number of heteroatoms, and consequently, the
n-heterocycle is removed after the phenyl ring, and in the level 2 scaffold, the dioxolane ring is retained instead of the pyrane ring.
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missing values limits the choice of the data sets. Compilations
of high-throughput screening (HTS) data are not suitable for
our purpose since inactivity is usually not confirmed in these
assays and the choice of which of the primary hits are to be
submitted to IC50 determination is often already influenced
by cherry-picking capacity, meaning that an absent IC50 value
of a compound that has been submitted to the primary screen
does not necessarily mean that the compound is inactive.

We used three data sets for this study, two from the
Novartis internal biological profiling and one extracted from
the National Cancer Institute (NCI) cancer cell-line screening
data. The first Novartis data set contains pharmacology safety
profiling data of 1006 compounds on 27 assays, mostly
aminergic G-protein coupled receptors (GPCRs) and ion
channels. The second data set contains the screening data of
3633 compounds screened on a panel of 20 protein kinases.
The third data set extracted from the NCI cancer screening
data comprises 7747 compounds screened with growth
inhibition values (GI50) from 35 cancer cell lines. In this data
set, the missing stereochemical data did not allow the
calculation of 3D descriptors.

In order to obtain the final structure-activity data matrixes
described here without missing values, we had to remove
from the three original data sets compound records with
many missing assay results, as well as assay data for assays
in which only a few compounds had been screened. For
further details about data set preparation, please refer to the
methods section.

COMPUTATIONAL METHODS

Data Set Preparation. The NCI cancer data set was
downloaded as an SDF file from NCI’s Web site (http://
cactus.nci.nih.gov/ncidb2/download.html). The original file
contained 32 557 structures for which growth inhibition
activity data were already given as pGI50. Then, from the
screening data of those cell lines, data points were removed
for those which had pGI50 values for less than 90% of the
structures. A total of 36 cell lines remained. Now, all
structures were removed which did not have pGI50 data for
these remaining cell lines, leaving 9066 structures surviving
standardization with the Pipeline Pilot software. After
molecules with reactive functional groups were filtered out
with the dbslnfilter tool by Tripos (www.tripos.com), 7747
structures remained. The pGI50 for compounds determined
as inactive had already been set to 4 in the original data set.
This data set is available as Supporting Information.

The two in-house data sets could be used without structural
preprocessing. However, IC50 data were converted to pIC50

values, thereby setting pIC50 ) 4 for all data where there
was no activity found within the dynamic range of the assay.
Statistical characteristics of the data sets are given in the
Supporting Information.

Descriptor Calculation. Pipeline Pilot software was used
to calculate FCFP_4 fingerprints, which were then folded
to a fingerprint of 2048 bit length. UNITY fingerprints were
calculated with UNITY software by Tripos. Physical chemi-
cal properties were calculated by Pipeline Pilot using the
AlogP model by Ghose-Crippen33 and the topological polar
surface area model by Ertl et al.34 For Similog, FEPOPS
and RDF code calculation in-house programs were used.

Clustering. Divisive K-means clustering was performed
with the divkm clustering software from Digital Chemistry

(www.bci.gb.com or www.digitalchemistry.co.uk) using the
Soergel (1-Tanimoto) distance measure between all finger-
print descriptors and the Similog keys, while the Euclidean
distance was used for all other descriptorssthese being the
distance metrics usually used in combination with the
respective descriptors. The cluster molecules component in
Pipeline Pilot was used for the OptiSim-like clustering
(PPClust). Clustering of the biological profiles was done with
the K-means algorithm implemented in the R-statistics
package (http://www.r-project.org/).

For the SOM, an in-house implementation of the Kohonen
maps described by Gasteiger and Zupan25 was used. The
principal component analysis of computed physical chemical
properties was performed with the SIMCA-P software by
Umetrics (www.umetrics.com). For each set, two PCs were
retained. The following cell-based partitioning was again
done with Pipeline Pilot. The partitioning into cells was
conducted such that the outmost cells in each dimension were
centered at the values ranking at the top 5% and bottom 5%
of all values for this dimension, and the PC space included
was dissected in the desired number of cells with an
approximately equal length of edges in both PCs.

Clustering with the Multiconformation FEPOPS De-
scriptors. When using the FEPOPS descriptors for similarity
searching, typically seven conformations leading to the most
diverse FEPOPS vectors were used, and only the one leading
to the highest similarity value is taken into account. For this
study, we needed an unambiguous assignment of a structure
to a cluster. However, using several conformers could lead
to a situation where different conformers could be members
of different clusters. In this situation, a tie-breaking procedure
is required. Two procedures were used. In the first, all cluster
members were ranked according to their distance to the
cluster center and a structure was assigned to the cluster,
where the respective conformer as a cluster member had the
lowest distance rank. This method will be referred to as
“dist”. The second method used a voting procedure assigning
a structure to the cluster having a majority of its conformers
as members. This tie-breaking procedure will be referred to
as “maj”. If one procedure failed to resolve a tie between
two clusters, then in each case the other was used as a
secondary tie-breaking criterion.

Rule-Based Classification.The determination of molec-
ular frameworks and their further abstraction were performed
within PipelinePilot as well as the calculation of the SCINS
codes. The Scaffold Tree31 classification by iterative removal
of the rings was performed with a proprietary program based
on the Molinspiration toolkit (www.molinspiration.com).
Because of the high fraction of natural products in the NCI
cancer data set, the structures of this had been in silico
degylcosidated before computing the scaffold tree in order
to avoid the tree being dominated by the glycoside rings.32

Repetition of Clustering Runs. All nondeterministic
partitioning methods were applied five times using each time
a different, pseudo-randomly permuted sequence of the input
records to ensure a different initialization even for such
programs in which the random seed could not be controlled.
Random grouping was performed by assigning each record
to a partition based on pseudo-random numbers. The
permutation of the experimental profiles with random noise
was conducted by generating normal distributed random
numbers with a standard deviation of log(3) using the rnorm
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function in the R statistics package. These random numbers
were added to all pIC50 values which were above the
threshold of pIC50 ) 4. If this operation leads to a pIC50

value below the threshold of 4, then the pIC50 value is set to
4, and out of the pIC50 having the threshold value of 4, one
was picked randomly and set to the original pIC50 value of
the permuted data point. This maintained the original
threshold, the fraction of the values above it, and the mean
pIC50.

RESULTS

Pareto Analysis. The Pareto plots for each of the data
sets showing the tradeoff between the number of classes and
the spread of the class in the activity space is shown in

Figures 3-5. In all three data sets, the tradeoff curves
obtained for the different structure-based classification
methods are between the boundary curves obtained by
clustering with the biological activity data and the random
partitioning. The standard deviation of the cluster spreads,
obtained with the five runs for each of the nondeterministic
methods, was generally rather small and rarely exceeded
0.01. The deviation of the tradeoff curve obtained with the
perturbed pIC50 data from the curve obtained with the original
pIC50 data was always larger than the statistical errors of
the clustering procedures themselves.

In all three data sets, the intersection between the tradeoff
curves of different methods was observed. The Pareto frontier
forming the nondominated solutions in the objective space

Figure 3. (a) Pareto analysis plot of the safety pharmacology profiling data set. In thex axis, the number of classes is displayed on a
logarithmic scale. They axis is the average class spread according to eq 3. (b) Matrix of the adjusted Rand indices comparing the classifications
obtained with the different methods, averaged over the different runs. The diagonal elements show the average adjusted Rand index according
to eq 4 between different runs of the same method. The numbers of classes used are shown in parentheses following each method.
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for the structural clustering is formed in different sections
by different classification methods. This means that one
overall optimal classification method cannot be identified.
In general, the PPClust method of Pipeline Pilot, especially
when combined with the FCFP_4 or UNITY fingerprints, is
the best solution, if the goal is to have a larger number of
partitions with on average five or less members. In the region
of smaller numbers of classes, with on average more
members, the Pareto frontier is formed by the tradeoff curves
of the divisiveK-means clustering, combined again with the
FCFP_4 or UNITY fingerprints. Clearly less optimal are the
classification methods based on physical chemical properties
especially combined with cell-based partitioning. Also, the
classifications obtained using RDF codes either together with
divisive K-means or self-organizing maps were biologically
less homogeneous than those obtained with the fingerprints.

In the analysis of the rule-based methods, in all cases, the
number of classes is very high when using the molecular
frameworks without further abstraction, leading to an average
number of class members smaller than or equal to two. This
shows that all data sets are rather diverse. The further
reduction of the scaffolds in the Scaffold Tree method gave
the reduction to three to five rings and results which were
almost as good as the clustering results with Pipeline Pilot,
with the exception of the kinase profile set where the two
ring scaffolds did not yield a considerably less optimal
classification than the fingerprint-based clustering methods.
Reduction of the scaffolds by the tree method to a single
ring did not provide a better solution than most of the other
structural methods, except the physical chemical property-
based partitions.

Figure 4. (a) Pareto analysis plot and (b) matrix of adjusted Rand indices for the kinase profile data subset. For details, see the caption
of Figure 3.
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Especially interesting are the results obtained with the
FEPOPS descriptor. There is almost no difference in each
case between the tradeoff curves obtained by the two tie-
breaking procedures maj and dist; also, the difference
between the tradeoff curves from DivKM and PPClust is
only small. Toward higher numbers of clusters, the methods
perform worse than all other methods, except the cell-based
clustering based on the PCs of the physical chemical
properties. With decreasing numbers of clusters, however,
the difference in the average spread between the FEPOPS
and the fingerprint-based methods diminishes, and in the case
of the safety profiling data set, the FEPOPS-based clustering
is superior to all other methods when reducing the number
of clusters below 20.

Besides common trends in data sets, there are differences,
especially between the kinase profile set and the two other
data sets. In the kinase profile data set, all scaffold-based
methods gave inferior results compared to their performance
in the other data sets. On each hierarchy level, there were
more molecules per scaffold than in the other data set,

indicating that the data set is less diverse in terms of different
scaffolds.

Adjusted Rand Indices. As the tradeoff curves of the
different clustering methods were rather close together in
the Pareto space, it is of interest to investigate whether the
methods yield basically the same classifications. This is
reflected in the adjusted Rand indices obtained for the
comparisons of the classifications resulting from different
methods. For each data set, the Rand indices were calculated
for a number of clusters, where DivKM and PPClust gave
rather similar spreads. For the safety profile, the kinase
profile, and the NCI cancer data set, the number of clusters
was set to 196, 400, and 1600, respectively. For methods
where the number of clusters was not fully controllable, the
solution with the number of clusters closest to these values
was chosen. Figures 3b, 4b, and 5b show the adjusted Rand
indices for each pair of methods in the off-diagonal elements.
The values are averaged over the five runs for each method,
if the methods are nondeterministic. The diagonal elements
show the adjusted Rand index values for different runs of

Figure 5. (a) Pareto analysis plot and (b) matrix of adjusted Rand indices for the NCI cancer data subset. For details, see the caption of
Figure 3.

332 J. Chem. Inf. Model., Vol. 47, No. 2, 2007 SCHUFFENHAUER ET AL.



the same methods, averaged over all pairs of different runs
of the respective method.

In all three data sets, the random partitions were, as
expected, completely uncorrelated with the biological profile
clustering and the structural clusters as well as between the
different runs of random partitioning. Also, the biological
clustering data show only minimal correlation to the different
chemical clustering data. In the case of the safety and kinase
profiles, the clusters obtained with the perturbed biological
data are still well-correlated with the clusters obtained on
the original data. This is not the case with the NCI cancer
data subset where the perturbed data show only minimal
correlation to the original data, and also the different
perturbation runs were only minimally correlated.

In all data sets, there are remarkable differences in the
Rand indices between the classifications obtained in different
runs of the nondeterministic methods. Whereas the DivKM
clustering with the UNITY fingerprints behaves de facto
deterministically, and many methods like PPClust with both
UNITY and FCFP_4 fingerprints still have rather high
adjusted Rand indices, sometimes only a very low correlation
between different runs is obtained. This is especially remark-
able in the case of PPClust using FEPOPS, although even
in this case, the standard deviation for the spread obtained
in different runs was not exceptionally high and still on the
order of magnitude of 0.01. In the case where FEPOPS
descriptors are clustered with DivKM, the correlation
between the individual runs is higher, especially when the
maj tie-breaking is used. Also, the clustering of the Similog
keys with DivKM and the clustering of the RDF codes with
SOM have only a comparatively low correlation between
the different runs.

When the classification methods are compared, the clus-
tering method seems to have a higher impact than the
descriptor. In the case of FCFP_4 and UNITY fingerprints
and DivKM and PPClust, the solutions pairs using the same
clustering algorithm had a higher adjusted Rand index than
the pairs using the same descriptor, but different clustering
methods. The two rule-based methods yield rather different
classifications having an adjusted Rand index between them
of 0.1-0.2 for the three data sets.

DISCUSSION

Scaffold and Scaffold Hopping. Depending on the
number of classes which are acceptable, the Pareto frontier
of biologically optimal clustering is formed by different
classification methods. For high numbers of classes, clas-
sification by scaffold tends to be the optimal method, whereas
for smaller numbers of classes, 2D fingerprint-based cluster-
ing methods are Pareto-optimal. For, even smaller numbers
of classes of 3D descriptor-based clustering methods are in
some cases displacing the 2D fingerprint-based methods in
the Pareto frontier. This is in line with the concept of scaffold
hopping, which acknowledges that scaffolds indeed convey
information about biological activity, but there are possible
forms of generalization beyond the scaffold, which can be
captured in suitable descriptors. In this context, it is
noteworthy that even in cases where scaffold-based methods
performed equally as well as descriptor-based methodssas
is the case for those numbers of partitions for which we
calculated the Rand index matrixsthe scaffold-based clas-

sifications are only weakly correlated to the classifications
generated by descriptor-based clustering. In this way, dif-
ferent scaffolds can be recognized as similar, and thus
scaffold hopping can be performed. However, especially
toward the lower number of clusters, the Pareto frontier of
chemical clustering is closer to that of the random partition-
ing than the tradeoff curve obtained by clustering with the
biological profiles. This suggests that scaffold hopping is a
difficult task, and pairs of biologically similar molecules are
often not recognized as similar by chemical structure-based
methods.

Considering that “biologically similar” can mean a com-
mon absence of any biological activity in all assays included
in the profile, the biological clustering as a benchmark has
to been seen rather as a theoretical benchmark than one which
is practically in reach. The failure to group together inactive
molecules in one cluster is most likely also the reason for
the small total correlation expressed as the adjusted Rand
index between biological clustering and any chemical
structure-based partitioning solution. It also provides a good
explanation why diversity selections obtained by clustering
are not generally beneficial to reduce the number of
compounds in HTS and still maintain the number of
discovered active classes.35

While in the data sets scaffold-based classification is
biologically meaningful, one needs to be very careful
interpreting this relation. One might assume that the scaffold
indeed conveys the activity itself or, at least, provides proper
spatial orientation for the side chains in order to display the
pharmacophore. However, the relationship between the
scaffold and biological activity might also be a consequence
of a directed chemical evolution of the scaffold by the
synthetic chemist, who will generally, once some initial
structure-activity relationship for a scaffold has been
established, derive structures for new compounds to synthe-
size from those compounds which have shown the desired
activity. Thus, the chemical space of a scaffold is extended
in a directed way toward a certain activity, and other potential
substitution patterns of the scaffold are less likely to be
explored. This kind of scaffold evolution has likely happened
in the case of the kinase set, where in particular, the
pharmacophoric features required for interaction with the
ATP-binding site common to all kinases are well-docu-
mented.36 This is even more true as at Novartis kinase
profiling was mostly only performed once some activity on
at least one kinase was discovered or if the compound was
synthesized in a medicinal chemistry program directed to a
kinase, meaning that this data set consists mostly of kinase-
directed molecules. In contrast to this, the targets of the
safety-profiling data set are usually perceived as counter-
targets, on which one wishes to avoid activity: most of the
molecules have not been synthesized with the intention of
generating activity on these targets, and therefore, directed
chemical evolution to create activity on these targets is less
likely. However, even if the relationship between the scaffold
and biological activity is a result of directed chemical
evolution, the information contained in the scaffold is still
of practical value, especially in a setup where one deals with
compound sets which are not dominated by nontargeted
combinatorial synthesis efforts.

Since all of the data sets used in this study were rather
small compared to a corporate screening collection, the
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question arises regarding the extent to which the results can
be extrapolated to larger compound sets. As despite a 7-fold
increase of the data set size between the safety pharmacology
profile and the NCI cancer data set similar trends in the
Pareto plots have been observed, this indicates that data set
size alone allows the extrapolation of the results. However,
the distribution of compounds over chemical series and the
target panel studied will also influence the outcome of
extrapolation to a whole industrial screening collection. In
the event where the set contains large chemical series, these
could be detected by rule-based classification. It seems to
be difficult to predict whether these scaffold-based clas-
sifications reflect the activity classes well or if the scaffold-
hopping potential of descriptor-based clustering is required
to group compounds with similar activity, but different
scaffolds, into one class.

Differences Resulting from the Type of Biological Data.
The three data sets used in our study covered different types
of biological activity, whereas both pharmacology-safety and
kinase profiles contained either biochemical or cell-based
assays measuring the activity of the compound on a single
protein: the NCI cancer data set comprises a panel of
phenotypic assays measuring the effect of the compound on
cell growth. One might imagine that cell-growth inhibition,
which can be effected by different biological pathways,
would be much more difficult to relate to chemical structure
than the interaction with a single protein target, and therefore,
we initially expected that classification based on chemical
structures would be less relevant with this type of biological
activity. However, this turned out not to be the case, at least
not to the extent we had expected.

If there were differences between the data sets, it was
rather the kinase profile data set, which differed from the
other two sets and yielded with the divisiveK-means
clustering classification results which were halfway between
biological and random partitioning even for a smaller number
of classes. This suggests that even in binding to the same
target binding site in the safety-pharmacology assays there
might be at least partially different pharmacophores involved,
whereas in the case of the kinases, most ligands are likely
to share the common ATP-site binding pharmacophore.
GPCRs, which form the majority of assays in the safety-
pharmacology profile set, are regarded as rather flexible37

and can be expected to tolerate more variance in the
pharmacophores of their ligands. FEPOPS descriptors which
describe the spatial arrangement of the ligand in a rather
fuzzy way can be expected to deal better with the topological
variance, which is more likely to occur in ligands for more
flexible proteins. This might explain why in the case of the
safety pharmacology data they are slightly superior to
chemical fingerprints when only a small number of partitions
is required, whereas the more rigid pharmacophore of the
ATP-binding site for kinases can be more easily reduced to
substructural elements contained in the fingerprints, which
therefore always yield superior classification solutions
compared to FEPOPS.

Reproducibility in Clustering. In contrast to the deter-
ministic, rule-based classification methods, clustering meth-
ods can produce a different outcome with each run, and with
many clustering methods, this is actually the case, as shown
by the low Rand indices between the different runs of the
same method. This nondeterministic behavior of the cluster

can result from ties in the distance metric between two
descriptor vectors. Especially in the case of binary fingerprint
descriptors, such ties are likely to occur, as MacCuish et
al.38 have demonstrated. In the case of the clustering based
on the FEPOPS descriptor, there is another source of
nondeterministic behavior, as the FEPOPS descriptor vectors
of seven conformer representations per molecule had been
clustered, whereas in the case of the other descriptors, each
molecule was represented by only one single descriptor
vector. Whenever different conformers belong to different
clusters, a decision procedure had to be applied that selected
one cluster to assign the compound to in order to obtain a
nonfuzzy clustering comparable with the other partitioning
methods. Here, the tie-breaking procedures we introduced
are not yet optimal.

Despite the nondeterministic behavior of the clustering, it
needs to be stressed that the different results obtained at each
run were found to have equal biological relevance and have
almost identical spreads in the Pareto plots. In this context,
it is worth noting that the number of different possible classes
described by the Stirling number of the second kind39 is
enormous even for data sets of a modest size; for the
classification of the safety profile data set with 1006 members
into 196 nonempty classes, there are 6.294× 101939solutions.
This makes it very likely that there exists a large number of
solutions which reflect the true biological clustering of the
compounds to a moderate degree as chemical structure-based
clusters do. In practical applications, the nondeterministic
nature of the clustering algorithms will often not become
manifest, as long as the sequence of the records in the input
is not changed, because the configuration of many clustering
applications forces a constant random seed, unless the user
specifies otherwise, and therefore, they seem to behave
deterministically to the innocent user. What kind of practical
value can clustering beyond the conservative area of chemical
scaffolds have, besides being a tool to assess the scaffold-
hopping capabilities of a descriptor? For the interpretation
of screening data, the usage of clustering as an idea rather
than a rule generator can help to spot common activity
patterns across chemical classes, and in this aspect, the usage
of different clustering procedures may help to detect different
aspects of chemical similarity. For the challenge of sampling
large data sets with small numbers of compounds, it is clear
that structural classification or clustering will not give us
“the” optimal solution but will still prevent choosing a
sampling solution with clearly redundant compounds.

CONCLUSIONS

We have compared the performance of different clas-
sification methods based on chemical structures with respect
to the relevance for biological activity. We found that none
of the methods analyzed can explain the full spectrum of
biological activity contained in the data set. However, both
rule-based, scaffold-oriented classification methods and
chemical descriptor-based clustering yield results which are
at least partially biologically meaningful. A general superior-
ity of one of the methods over the other was not found;
however, scaffold-based classifications were usually superior
when larger numbers of partitions are acceptable, whereas
smaller numbers of classes are best created with clustering
using chemical descriptors. The smaller the intended number
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of classes, the more the descriptor needs to abstract from
substructural features.
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APPENDIX: SCINS

SCINS describes a reduced graph of the scaffold similar
to those used in the MEQI-System described by Xu and
Johnson.30 Each reduced scaffold graph is characterized by
a string of numbers in the formatABCDE-FGHI-JKLM .
These numbers stand for the following:

A. Number of Chain Assemblies.Chain assemblies are
contiguous linkers between ring assemblies. They are
uncovered by removing all ring bonds in the molecule.

B. Number of Chains.Chains are all unbranched linkers
needed to cover all nonring bonds in the molecule.

C. Number of Rings.
D. Number of Ring Assemblies.Ring assemblies are

fragments remaining when all acyclic bonds have been
removed.

E. Number of Bridge Bonds.A contiguous path of more
than one bond shared between more than one rings counts
as bridge bond.

F. Number of Ring Assemblies Consisting of Exactly
One Ring.

G. Number of Ring Assemblies Consisting of Exactly
Two Rings.

H. Number of Ring Assemblies Consisting of>3 Three
Rings.

I. Number of Macrocycles.
J. Binned Length of Shortest Chain.If the binned length

of the shortest chain exists, it is used; otherwise, it is zero.

K. Binned Length of Second Shortest Chain.If the
binned length of the second shortest chain exists, it is used;
otherwise, it is zero.

L. Binned Length of Third Shortest Chain. If the binned
length of the third shortest chain exists, it is used; otherwise,
it is zero.

M. Binned Length of Fourth Shortest Chain. If the
binned length of the fourth shortest chain exists, it is used;
otherwise, it is zero.

For the binning of chain lengths, the following scheme is
applied:

Supporting Information Available: Summary statistics
on the three data sets is available as Supporting Information.
In addition, for the subset extracted from the NCI cancer data
set, activity data and clustering results with Scaffold Tree are

given. This information is available free of charge via the
Internet at http://pubs.acs.org.
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