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A pragmatic approach has been developed for the estimation of aqueous ionization constants (pKa) for
druglike compounds. The method involves an algorithm that assigns ionization constants in a stepwise manner
to the acidic and basic groups present in a compound. Predictions are made for each ionizable group using
models derived from semiempirical quantum chemical properties and information-based descriptors.
Semiempirical properties include the partial charge and electrophilic superdelocalizabilty of the atom(s)
undergoing protonation or deprotonation. Importantly, the latter property has been extended to allow
predictions to be made for multiprotic compounds, overcoming limitations of a previous approach described
by Tehan et al. The information-based descriptions include molecular-tree structured fingerprints, based on
the methodology outlined by Xing et al., with the addition of 2D substructure flags indicating the presence
of other important structural features. These two classes of descriptor were found to complement one another
particularly well, resulting in predictive models for a range of functional groups (including alcohols, amidines,
amines, anilines, carboxylic acids, guanidines, imidazoles, imines, phenols, pyridines, and pyrimidines). A
combined RMSE of 0.48 and 0.81 was obtained for the training set and an external test set compounds,
respectively. The predictive models were based on compounds selected from the commercially available
BioLoom database. The resultant speed and accuracy of the approach has also enabled the development of
Web application on the Novartis intranet for pKa prediction.

1. INTRODUCTION

Since the majority of known drugs are ionizable at
physiological pH-levels1-6 (ca. 1-8), a knowledge of the
ionization constants of compounds is particularly important
in the drug discovery process. These constants can have a
profound effect on the physicochemical properties of a
compound and are therefore essential for the optimization
of absorption, distribution, metabolism, and excretion
(ADME) characteristics. Notably, compounds in their un-
ionized form are less soluble but can more easily penetrate
lipophilic barriers encountered on the way to a biological
target. Knowledge of the ionization state of a compound is
also required for determining the correct binding-site interac-
tions that occur and the development of reliablestructure-
actiVity relationships (SAR). Furthermore, ionization con-
stants allow the enumeration of likely chemical species (i.e.,
that are present at ca. pH 7) prior to protein-ligand docking
studies.

Ionization constants, typically represented as pKa, pro-
vide an insight into the degree of dissociation of hy-
drogen ions from a compound at a given pH. These acidity
constants can be derived for both the acidic groups (HA)
and the conjugate-acid of basic groups (BH+) in a com-
pound

where low values indicate the presence of strongly acidic or
weakly basic groups and high values indicate the presence
of weakly acidic or strongly basic groups. pKa equals the
pH at which a drug is 50% ionized and 50% un-ionized.
Experimental methods for deriving these constants involve
exposing a compound to an environment of changing pH
and monitoring changes that occur to a property dependent
on the ionization state of the compound. Modern automated
methods based on UV absorption are now available for the
high-throughput(HT) measurement of pKa.7 The develop-
ment of HT-pKa methods is particularly important for drug
discovery, where there is a need to profile a large number
of compounds using only a small amount of sample. Despite
the reported accuracy of these techniques, however, ioniza-
tion constants are often missed for groups not in close
proximity to a UV-chromophore. Measurements can also be
made using alternative, traditional titration experiments with
glass pH electrodes. However, the physical size and sensitiv-
ity of this apparatus, and the time required for the electrode
to stabilize, often limits their wider application in drug
discovery.

In silico methods for pKa estimation are desirable, aiding
the design of experiments and providing predictions for
missing ionization constants and ‘virtual’ compounds that
have not yet been synthesized. Unfortunately, pKa values
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remain one of the most challenging physicochemical proper-
ties to predict, with tautomerism, charge transfer in conju-
gated systems, and multiple ionization centers having a
complex affect on the ionization of a particular group.
Nonetheless, reasonable predictions can be made using
methods such aslinear free energy relationships(LFER)
based on Hammett and Taft equations, with one of the most
popular commercial tools, ACD/pKa,8 using this approach.
However, LFER are typically derived from congeneric series
of simple organic molecules, and their applicability to
druglike compounds is often limited. Ab initio simulations
have also been used to predict pKa,9 but the computational
complexity of these approaches often limits their applicability
to relatively small compounds. Furthermore, the representa-
tion of the solvent is particularly problematic. Properties
derived using other quantum chemical and semiempirical
methods have also shown good correlation to pKa,1,10 with
the latter allowing predictions to be made in a reasonable
amount of time. However, for many of the published
methods, results were limited to a series of monoprotic
structures, and, indeed, the relationships were often found
to be unsuitable for charged compounds, i.e. when a more
basic or acidic group is present in addition to the ionizable
group of interest. Molecular tree structured fingerprints,3

similar to hierarchically ordered spherical description of
enVironment(HOSE) codes,11 have successfully been used
to predict ionization constants for more diverse sets of
compounds. These information-based descriptors are par-
ticularly good at exploiting large amounts of experimental
data to model complex affects on pKa. However, complex
definitions of these descriptors were required to model some
conjugated systems, for which the electronic (mesomeric and
inductive) effects of substituents are dependent on their point
of attachment. This was illustrated by improvements ob-
served when separate molecular tree descriptors were derived
for ortho-, meta-, andpara-substituents present in anilines,
for example.4

The approach presented in this paper was developed for
the estimation of pKa of druglike compounds. Importantly,
unlike many of the published methods, the focus was to
develop a method that could be applied to multiprotic
compounds. An algorithm has therefore been developed that
applies multiple predictive models in a manner which
reproduces the correct ionization order of different groups
within such compounds. The predictive models used by the
algorithm could essentially be derived using any appropriate
set of descriptors. In this study, two classes were selected
from the literature. Semiempirical properties including the
partial charge and electrophilic superdelocalizability of atoms
were used to model electronic effects. Unlike the original
publication,1 however, these properties have been extended
to provide models that are applicable to charged compounds.
Information-based descriptors including molecular tree struc-
tured fingerprints3 and various 2D substructure flags to
indicate the presence of other important structural features
were also used. These latter descriptors are particularly
important if the vast amounts of data provided by modern
HT-pKa methods are to be fully exploited in the future. The
descriptors used in this study were found to complement one
another particularly well and, combined with the prediction
algorithm, were capable of reproducing the correct ionization
order of groups present in the compounds studied. The

resultant speed and accuracy of the approach has also led to
the development of Web application for the prediction of
pKa, an important addition to the existing suite of chemin-
formatics tools available on the Novartis intranet.12

2. METHODOLOGY

2.1. Software.The CACTVS toolkit13 was used through-
out this project for chemical data manipulation and SMILES14

parsing. 3D coordinates were generated for structures using
the CORINA automated structure generation program.15 The
semiempirical properties were calculated using a modified
version of Mopac 6.0116 (available from Peter Bladon,
Interchem Chemical Services, Glasgow).

2.2. Compound Data Sets.The predictive models were
trained using compounds selected from the commercially
available BioLoom database.5 BioLoom contains physico-
chemical data and structures, including over 10K compounds
with associated pKa values, extracted from the literature. The
data used in this study included values determined in aqueous
solution at temperatures of around 20°C and excluded salts,
solvent mixtures, and approximate values.

Predictive models were developed for a range of ionizable
groups including alcohols, amidines, amines, anilines, car-
boxylic acids, guanidines, imines, phenols, pyridines, and
pyrimidines. The current data sets contained compounds with
either one or a combination of two or more of these groups.
For compounds having multiple ionizable groups, the pKa

values had to be assigned to the correct groups and any
stronger acidic or basic groups identified. This procedure
was aided by simple models derived using only the semiem-
pirical properties. These preliminary models allowed incor-
rectly assigned values to be identified and corrected without
the risk of overfitting to previously incorrect assignments.
Compounds containing multiple ionizable groups of the same
functional group type were often excluded unless these
groups were identical. This avoided the incorrect assignment
of values to the former groups, while, in the latter case, the
assignment of the values to the identical groups was arbitrary.
However, a statistical factor was subtracted from these
observations prior to training. For example, if two identical
acid groups are present, then these both have an equal chance
of losing a proton, increasing their effective acidity, and
therefore decreasing the observed pKa by log2. The loss of
a proton from the second group, in contrast, results in two
groups that have an equal chance of being reprotonated,
therefore increasing the observed pKa by log2. For structures
that could form multiple tautomers, the tautomer forms that
produced the most predictive models were used in each case.

The critical distillation of the experimental data led to the
development of a so-called ‘star-list’ of pKa values. Each
value was associated with the SMILES string of the parent
structure in its neutral state, the ionizable atom of interest
(undergoing protonation or deprotonation), any atoms acting
as stronger bases (protonated prior to the ionization of the
atom of interest) or acids (deprotoned prior to the ionization
of the atom of interest), and any applicable statistical factors
affecting the observed pKa. The influence of functional
groups with similar micro-pKa constants that may interfere
to produce different than expected macro-pKa (observed)
constants9 was ignored in this current study. This should have
little effect on the predictive models since compounds
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containing such groups, i.e., with very similar pKa values
that were difficult to assign, were generally excluded.

Finally, the data sets were each divided into a training
and external test set of experimental data. A simplek-means
clustering was performed based on the Euclidean distance
between the molecular tree descriptors derived for each
ionizable group. The number of clusters produced was set
to the number of test set compounds required, with the
compounds closest to the cluster centroid being selected in
each instance. The final test set contained approximately 20%
of the observations for each of the ionizable groups studied.

2.3. Semiempirical Properties.The semiempirical prop-
erties were generated for each compound in multiple ioniza-
tion states using AM1.17 Based on previously published
results,1 both the partial charge andelectrophilic superde-
localizabity(SE) of the ionizable atoms of interest were used
in this study. SE is based on frontier electron theory18 and
derived from the eigenvectorscRj and eigenvaluesλj of the
atomic orbitalsR and molecular orbitalsj of a structure

where the sum is calculated over the atomic orbitals for a
given atomp and the occupied molecular orbitals. This
property is often correlated with the pKa of monoprotic
compounds,1,2 but, unfortunately, these relationships are not
applicable to multiprotic compounds with an additional
charged group. To overcome this limitation, each SE value
was replaced by a series of values derived from the structure
in various ionization states. This series starts with the value
derived from the neutral structure followed by relative values
derived from various ionized states, where different numbers
of the stronger acidic and basic groups are ionized in each
case. This allowed the effect of the various ionized groups
on the ionization of the group of interest to be modeled
effectively. The relative values in the series being the change
in SE affected when a given number of either acidic or basic
groups were ionized, i.e., starting with one acid or base up
to a given maximum of acids or bases, but not combinations
of these. Whenever there was a choice of groups to ionize,
the groups that produced the largest difference with respect
to the neutral structures were selected. Using this series of
relative values resulted in far superior models compared to
using the absolute values of SE for the groups of interest in
the correctly charged species. In contrast, only the partial
charge derived for the structure in its correct ionization state
was used in the predictive models.

The time required to derive the series of SE properties
increases with the number of ionizable groups being com-
pared. It was therefore beneficial to limit these to the most
likely groups to have a strong affect, i.e., to groups in close
proximity or part of the same conjugated system as the group
of interest. This was achieved by ranking the groups in
descending order of the minimum number of isolating
carbons (along all paths) followed by the minimum path
length between these groups and the group of interest. The
more time-consuming computation of the affects on SE was
then, optionally, limited to only the highest ranking groups.

The performance was also greatly increased by only using
the 3D coordinates generated by CORINA, i.e., without any
further geometry optimization. Preliminary studies showed

that performing a geometry optimization using AM1 in
Mopac only produced a modest improvement in the models,
with an increase in RMSE of around 0.01, while the
computational time required increased 10-fold. In compari-
son, using a much faster molecular mechanical minimization
resulted in no improvement to the models. A full confor-
mational analysis was not, of course, performed since the
increased computational time would have been unfeasible.

2.4. Information-Based Descriptors.The information-
based descriptors included molecular-tree structured finger-
prints and a small selection of additional 2D substructure
flags. The molecular-trees encode the frequency of occur-
rence of different atom-types at distances moving away from
the ionizable atom of interest. In this study, Sybyl atom-
types19 and through-bond distances were used to generate
the descriptors. The Sybyl atom-types encode numerous
atomic properties that affect the ionization constant of a
neighboring atom, including element type, hybridization, and
formal charge. Figure 1 shows the atom-type frequencies
used in the molecular-tree generated for aniline which
consists of aromatic carbon (C.ar) and planar nitrogen (N.pl)
atom-types, for example.

Molecular-trees spanning five bonds away from the central
atom were found to be adequate for modeling pKa. These
descriptors were generated using both the neutral and also
the appropriately ionized structure for each observation. 2D
substructural flags were also used to indicate the presence
or absence of other important structural features and provided
useful corrections for otherwise common outliers, including
ionizable groups involved in ring closure or the formation
of internal hydrogen bonds. The substructure flags used in
each of the models are discussed further in the results section.

2.5. Model Generation. The predictive models were
derived usingpartial least-squares(PLS) and validated using
7-fold cross-validation. All of the descriptors were standard-
ized (autoscaled) prior to model generation. For comparison,
models were generated using both the semiempirical proper-
ties and information-based descriptors independently and in
combination. Consecutive latent variables were only added
to the PLS models if the resultant cross-validated correlation
coefficient increased by greater than 5%.

2.6. Prediction Algorithm. A series of substructural
patterns was used to assign each predictive model to the
correct ionizable groups within a structure. If reliable
predictions are to be made, however, then other groups in
the structure that are either more acidic or basic must also
be identified and protonated accordingly. A simple algorithm
was therefore developed to assign the pKa values in a
stepwise manner to all of the ionizable groups present, i.e.,

SE(p) ) 2 ∑
j)1,m

∑
R)1,q

(cRj
2/λj)

Figure 1. Molecular tree structured fingerprint generated for an
aniline group with one planar nitrogen (N.pl) and six aromatic
carbon (C.ar) atoms.
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starting with the most basic (least acidic) group and ending
with the most acidic (least basic) group. At the beginning
of each step, any remaining acids were considered to be more
acidic (and deprotoned), while previously assigned bases
were considered more basic (and protoned).

The determination of the next ‘most basic’ group at each
step was initially done by simply predicting the pKa for each
of the remaining groups. However, this did not always
reproduce the correct ionization order for the training
compounds, particularly when the pKa values of the ionizable
groups present were similar. A more robust method was
therefore developed which involved a further comparison of
the top two ranking (most basic) groups. For each of these
groups, a further prediction was made but assuming that the
other top ranking group, in each case, was more basic (less
acidic), i.e. in contrast to the initial prediction. Essentially,
this should provide at least one prediction for each group
for which the correct ionization state of the compound was
used. The highest average pKa was then used to select the
final most basic group, with the pKa from the initial
prediction being assigned to this group as a result.

As described, for multiprotic compounds calculations were
performed for each structure in multiple ionization states.
The performance of the algorithm can therefore be improved
if the number of states being compared at each step is
reduced. This was achieved using a combination of methods.
First, initial predictions were made for the neutral structure,
and any groups that appeared to be particularly weak were
simply ignored in later comparisons. Other heuristics could
also be used to reduce the number of comparisons at each
step, including the exclusion of functional groups that are
known to always be much weaker than the current group
under consideration and also ignoring groups that are in close
proximity to a previously assigned group. For example, if
two amines are only separated by two bonds, then the second
group to be protonated is much less basic and can therefore
be ignored in subsequent comparisons. These considerations
do not affect the quality of the predictions but were
considered to improve the performance of the Web-tool
developed during this project.

3. RESULTS

This section summarizes models that were trained on
compounds containing various combinations of the ionizable
groups mentioned. Although the methodology can be ex-
tended to include compounds with very many ionizable
groups, these initial results are limited to compounds with
only one more acidic or basic group in addition to the
ionizable group of interest. For most of the functional groups
studied, compounds containing two identical ionizable groups
were also included in the training sets. For these compounds,
the assignment of pKa values to each group was arbitrary,
but, as previously described, the values had to be adjusted
by an appropriate statistical factor prior to training. The
compounds used to train each of the models are described
in more detail throughout this section.

The models generated using either the semiempirical
properties (SP) or information-based descriptors (IB) and the
combination of these descriptors (SP and IB) are described.
These are summarized by the number of compounds (Ncpds),
number of latent variables (NLV), correlation coefficient (R2),

root mean squared error of estimates (RMSE), and 7-fold
cross-validated correlation coefficient (Q2). Figures 2-8
show the observed and predicted pKa values for the optimal
models derived using the combination of descriptors. These
plots highlight the neutral (O), positively charged (red
square), and negatively charged (blue square) compounds
used in each of the training sets.

3.1. Alcohols Model. The alcohols model was trained
using compounds containing aliphatic alcohol (ROH), phenol
(1a), 3/5-hydroxypyridine (1b), and 5-hydroxypyrimidine
(1c) groups. The majority of compounds were aromatic
alcohols which, since the negative charge of the resultant
anions is stabilized over the delocalized system, are typically
more acidic than aliphatic alcohols.

Unsubstituted 2/4/6-hydroxypyridine (1d) and 2/4/6-hy-
droxypyrimidine groups were excluded from the training set
due to the potential formation of pyrid-2/4/6-one (1e) and
pyrimid-2/4/6-one tautomers, respectively. These structures
tended to be significant outliers, with the hydroxyl group
being much less acidic than predicted by the models.

Compounds containing an additional weakly basic aniline,
pyrimidine, and pyridine group were also included in the
training set. However, compounds with strongly basic amine
groups were excluded since the pKa of these groups were
often difficult to distinguish from the pKa of the weakly or
moderately acidic hydroxyl groups. Compounds containing
a stronger carboxylic acid or two identical alcohol groups
were also included. The resultant predictive models are
summarized in Figure 2.

3.2. Amines Model.The amines model was trained using
compounds containing primary (RNH2), secondary (R2NH),
and tertiary (R3N) amine groups. This is a particularly
important model since amine groups commonly occur in
druglike compounds and are typically ionized at physiologi-
cal pH-levels.

Compounds containing an additional weakly basic aniline,
amide, pyridine, or pyrimidine group were also included in
the training set. Both compounds with strongly acidic
carboxylic acid groups and weakly acidic alcohol groups
were included, with the former functional groups being
appropriately deprotonated prior to training. The resultant
predictive models are summarized in Figure 3. The informa-
tion-based descriptors also included substructural flags
indicating the presence of ionizable groups within a primary,
secondary or tertiary amine, a three- to six-membered ring,
and/or within a morpholine, piperazine, or quinuclidine
group.
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3.3. Anilines Model.The anilines model was trained using
compounds containing aniline (3a) and aminopyridine (3b)
groups. Anilines are usually less basic than amines, with the
aromatic stabilization of the group lost on protonation of the
planar nitrogen. The planar nitrogen was also assumed to
be less basic than the aromatic nitrogen in aminopyridines.
The latter nitrogen atom was therefore protonated prior to
the training of the anilines model. However, for the weakly

basic aminopyridine group there were limited training data
available, and, indeed, no data were available for analogous
aminopyrimidine groups.

Compounds containing an additional weakly acidic alcohol
group or strongly basic amine group were also included in
the training set, with the latter being protonated prior to
training. However, compounds with weakly basic pyridine
and pyrimidine groups were excluded since the pKa of these
groups was often difficult to distinguish from the pKa of the
weakly or moderately basic aniline groups. The resultant
predictive models are summarized in Figure 4. The informa-
tion-based descriptors also included substructural flags
indicating the presence of ionizable groups within a primary,
secondary, or tertiary amine and/or a three- to six-membered
ring.

3.4. Carboxylic Acids Model.The carboxylic acids model
was trained using compounds containing aliphatic and
aromatic carboxylic acids (RCO2H). These groups are
reasonably acidic and therefore usually ionized at physi-
ological pH-levels.

Compounds containing an additional basic amine or aniline
group, both of which were protonated prior to training, or a
less acidic alcohol group were also included in the data set.
However, compounds containing weaker basic groups,
including pyrimidines and pyridines, were excluded since
the pKa of these groups were difficult to distinguish from
the pKa of the strongly acidic carboxylic acids. The resultant
predictive models are summarized in Figure 5. The semiem-

Figure 2. Summary of predictive models derived using the alcohols
training set with predicted and observed pKa shown for the
combined (SP and IB) descriptor model.

Figure 3. Summary of predictive models derived using the amines
training set with predicted and observed pKa shown for the
combined (SP and IB) descriptor model.

Figure 4. Summary of predictive models derived using the anilines
training set with predicted and observed pKa shown for the
combined (SP and IB) descriptor model.
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pirical properties of both oxygen atoms in the carboxylic
acid were included in the respective models.

3.5. Imines Model.The imines model was trained using
compounds containing imine (5a), amidine (5b), guanidine
(5c), and imidazole (5d) groups. In each case, protonation
of the more basic sp2-hybridized nitrogen was considered.
The sp2-hybridized nitrogen of imines is more electronegative
and therefore tends to be less basic than amine groups.
However, stabilization of the conjugate acid formed by
guanidines and, to a slightly lesser degree, amidines makes
these related groups strongly basic. However, aromatic
imidazoles are relatively stable and therefore tend to be
weakly basic. The sp3-hybridized nitrogen in the latter three
groups is considerably less basic than the imine nitrogen,
with either no stabilization of the ionized form occurring or
aromatic stabilization being lost in the case of the imid-
azoles.

Unsubstituted amidine, guanidine, and imidazole groups
often form multiple tautomer forms. Training was therefore
restricted to compounds where the resultant tautomers were
equivalent to one another. This removed many outliers from
the training set that otherwise resulted from either tautomer
effects or the selection of the least prominent tautomer prior

to training. Protonation of the compounds that were included
in the training set, however, led to the formation of principal
resonance structures that were equivalent. For these struc-
tures, an appropriate statistical factor therefore had to be
subtracted prior to training, since each of the equivalent
nitrogen atoms that were formed had an equal chance of
losing a proton.

Due to the restriction placed on the training set compounds,
the current models are limited to compounds containing just
the single ionizable groups of interest. The resultant predic-
tive models are summarized in Figure 6.

3.6. Pyridines Model.The pyridines model was trained
using compounds containing pyridine (6a) and aminopyridine
(6b) groups, with the more basic pyridine nitrogen considered
to undergo protonation prior to the planar nitrogen in the
latter case.

Compounds containing additional weakly acidic aliphatic
alcohol groups or basic amine groups were also included,
with the latter being protonated prior to training. Aniline,
phenol, carboxylic acid, and pyrimidine groups were not
included in the current results, since the pKa of these groups
are often difficult to distinguish from the pKa of the
moderately basic pyridine groups. The resultant predictive
models are summarized in Figure 7.

3.7. Pyrimidines Model. The pyrimidines model was
trained using compounds containing pyrimidine (7a) and
aminopyrimidine (7b) groups. Similar to the pyridines, the

Figure 5. Summary of predictive models derived using the
carboxylic acids training set with predicted and observed pKa shown
for the combined (SP and IB) descriptor model.

Figure 6. Summary of predictive models derived using the imines
training set with predicted and observed pKa shown for the
combined (SP and IB) descriptor model.
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pyrimidine nitrogen was assumed to be more basic than the
planar nitrogen in the latter group.

Since there are two nitrogens that could undergo proto-
nation, only symmetric groups were considered in this initial
study, i.e., where the protonated of either nitrogen was
arbitrary. However, as with the imines model, an appropriate
statistical factor was taken into account prior to training.
Compounds containing quinazoline (7c) groups were also
excluded because of this restriction. These compounds also
have the potential to form hydrated species20 (7d), and
exclusion of such compounds further reduced the number
of outliers observed for this model.

These restrictions resulted in a relatively small training
set of compounds, which was exacerbated by the pyrimidines
being relatively weak bases. The current training set was also
limited to compounds containing a single ionizable group.
The resultant predictive models are summarized in Figure 8.

3.8. External Test Set.The models resulted in a combined
RMSE of 0.81 for the external test set of 350 compounds
(Figure 9). These compounds included 14 structures that
contained a more basic or acidic (charged) group in addition

to the group undergoing ionization; many of these are also
available in the literature (see Figure 10a-l). The worst
prediction was obtained for the imidazole moiety of com-
pound (10f) with an error,∆pKa, of 2.27. However, since
the imines training set only contained three such charged
compounds, this is not too unexpected.

3.9. Further Ionizable Groups. Predictive models have
also been successfully derived for other ionizable groups
including, hydroxamic acids, oxazoles, oximes, sulfonamides,
and thiazoles using further experimental data available in-
house. Unfortunately, reliable models are still not available
for some important groups, such as phosphonic acids and

Figure 7. Summary of predictive models derived using the
pyridines training set with predicted and observed pKa shown for
the combined (SP and IB) descriptor model.

Figure 8. Summary of predictive models derived using the
pyrimidines training set with predicted and observed pKa shown
for the combined (SP and IB) descriptor model.

Figure 9. Predictions made for the validation set using both the
SP and IB descriptors.
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acidic tetrazoles. However, we are in the process of rectifying
this in collaboration with the physical chemistry group at
Novartis.

4. DISCUSSION
The semiempirical properties and information-based de-

scriptors explored in this study modeled ionization constants
effectively for a variety of functional groups. The close
agreement between theR2 andQ2 of the models derived using
the semiempirical properties suggest that these descriptors
were unlikely to overfit the training data. In addition, re-
placing the absolute SE value with a series of relative values
successfully modeled the effects of ionized groups upon the
ionization of a further group of interest within multiprotic
structures. For the 324 observations in the training set that
involved a charged species all of the associated models
provided reasonable predictions. However, the typically high
RMSE of the models based on the semiempirical properties
suggests that despite being highly extrapolative many outliers
still persist. This is possibly since the properties are good at
modeling electronic effects, but their effectiveness is greatly
reduced when these effects are not dominant. This is particu-
larly evident for the amines model, with anR2 of 0.56, where
the aliphatic nitrogen is insulated by adjacent sp3-hybridized
carbons. In contrast, for the anilines model, with anR2 of
0.73, the basicity of the planar nitrogen is highly dependent
on the stabilizing electronic (mesomeric and inductive)
effects of substituents attached to the aromatic ring. Models
based on the information-based descriptors, in comparison,
provided a much better fit to the training compounds, with

typically lower RMSE values, demonstrating their capability
to encode many more of the structural phenomena affecting
pKa. This can be attributed to their ability to exploit the
information resources available, although the greater dis-
crepancy between theR2 and Q2 values of the resultant
models suggests that some overfitting to the training data
may have occurred, particularly for the smaller training sets.
Overall, the two classes of descriptor complement one
another well, with the combined models being highly
predictive and providing a good fit to the training data.

The quality of the models was further exemplified by their
ability to reproduce the correct ionization order of ionizable
groups in all of the multiprotic structures studied. This was
successfully achieved using the algorithm introduced in this
paper, where a consensus of predictions is used to identify
the most basic group in a structure during the stepwise
assignment of ionization constants. This required the models
to be applicable to the ‘hypothetical’ ionization states
compared at each step and was certainly aided by the
semiempirical properties, which allowed highly extrapolative
models to be derived. In contrast, when using only the
information-based descriptors, the models often provided
unreliable predictions for compounds that were dissimilar
to the training set compounds. This was particularly prob-
lematic for weak acids and bases, where the models tended
to overestimate their respective acidity or basicity.

The collation of reliable training data for pKa prediction
was particularly tedious and problematic. Much effort was
required to assign pKa values to the correct groups and

Figure 10. Predicted pKa values for charged species in the test set with observed pKa-values available in the literature (a,23 b,24 c,25 d,26

e,27 f,28 g and h,29 i,30 j,31 k,32 l33).
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identify any stronger acidic and basic groups that were
present. This procedure would certainly benefit from ex-
perimental methods to identify site-specific pKa values, for
example, based on structure elucidation techniques such as
NMR. However, such time-consuming procedures are prob-
ably not feasible in the near-term.

The methods developed during the study appear to be ap-
plicable to a wide range of functional groups in mono- and
multiprotic structures. However, the availability of suitable
training data severely limits our ability to generate models
for all conceivable functional groups and functional group
combinations. The determination of the applicability domain
of each model also requires some consideration. For instance,
predictions for purine21 could be made using the models
developed in this study: the pyrimidine model providing a
good estimation for the second ionization constant (observed
) 2.3/predicted) 2.5) and the imine model providing a,
not so good, prediction, for the first ionization constant

(observed) 9.0/predicted) 5.7). The applicability of the
latter model may therefore be questionable, and the genera-
tion of a more targeted model for purines may be required.
We are currently working hard to increase the number of
functional groups modeled and also to define rules for the
application of these models to more complex functionality.
Unfortunately, as previously stated, the availability of suitable
training data is a severe hindrancesparticularly when trying
to implement this approach using public domain data.

5. WEB APPLICATION

The combination of descriptors and the predictive algo-
rithm provided not only reasonable predictions but also a

Figure 11. Web-tool for pKa prediction.

Figure 12. pH/ionization state distribution.
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pragmatic approach for pKa prediction. This allowed a Web-
based tool for pKa prediction to be developed for use by the
medicinal chemists at Novartis (see Figure 11). Importantly,
the tool provides predictions for all of the ionizable groups
in a structure with no prior knowledge of the ionization order
of these groups being required. Appropriate warnings,
information, and advice is also provided to the users when
tautomers, potentially hydrated species, and other problematic
groups are encountered. The interpretation of the results is
aided graphically using plots showing the distribution of
major species formed by compounds at varying pH-levels
(see Figure 12). Finally, a Wiki22 is provided which sum-
marizes the descriptors, training compounds, and predictive
ability of the models used by the Web-tool. This feature
provides an informal forum for the exchange of ideas
between the users and development team and should provide
feedback for the continued development of the tool.

6. CONCLUSIONS
The semiempirical properties and information-based de-

scriptors have been shown to provide consistently good
models for the estimation of pKa. The series of semiempirical
properties used in this study also allows the derivation of
pKa for multiprotic compounds, overcoming limitations
highlighted in previous publications. The addition of the
information-based descriptors provided models with an
excellent fit to the training data and allowed the large
amounts of available training data to be fully exploited. The
prediction algorithm successfully combined the multiple
descriptor models to provide reasonable predictions for
multiprotic compounds. This approach has also allowed the
development of a Web-tool for pKa prediction at Novartis.
Further applications are currently being investigated, includ-
ing the enumeration of chemical species prior to protein
docking studies and logD prediction for druglike compounds.
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