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Following the theoretical model by Hann et al. moderately complex structures are preferable lead compounds
since they lead to specific binding events involving the complete ligand molecule. To make this concept
usable in practice for library design, we studied several complexity measures on the biological activity of
ligand molecules. We applied the historical IC50/EC50 summary data of 160 assays run at Novartis covering
a diverse range of targets, among them kinases, proteases, GPCRs, and protein-protein interactions, and
compared this to the background of “inactive” compounds which have been screened for 2 years but have
never shown any activity in any primary screen. As complexity measures we used the number of structural
features present in various molecular fingerprints and descriptors. We found generally that with increasing
activity of the ligands, their average complexity also increased, and we could therefore establish a minimum
number of structural features in each descriptor needed for biological activity. Especially well suited in this
context were the Similog keys and circular substructure fingerprints. These are those descriptors, which
also perform especially well in the identification of bioactive compounds by similarity search, suggesting
that structural features encoded in these descriptors have a high relevance for bioactivity. Since the number
of features correlates with the number of atoms present in the molecule, also the number of atoms serves
as a reasonable complexity measure and larger molecules have, in general, higher activities. Due to the
relationship between feature counts and densities on one hand and biological activity on the other, the size
bias present in almost all similarity coefficients becomes especially important. Diversity selections using
these coefficients can influence the overall complexity of the resulting set of molecules, which has an impact
on the biological activity that they exhibit. Using sphere-exclusion based diversity selection methods, such
as OptiSim together with the Tanimoto dissimilarity, the average feature count distribution of the resulting
selections is shifted toward lower complexity than that of the original set, particularly when applying tight
diversity constraints. This size bias reduces the fraction of molecules in the subsets having the complexity
required for a high, submicromolar activity. None of the diversity selection methods studied, namely OptiSim,
divisive K-means clustering, and self-organizing maps, yielded subsets covering the activity space of the
IC50 summary data set better than subsets selected randomly.

INTRODUCTION

The discovery of lead structures is an important and still
challenging task in the overall drug discovery process. It is
possible to discover lead structures by virtual screening
techniques based on known ligands (similarity1-3 or phar-
macophore searching4) or on target protein structures (dock-
ing5) or de novo design.6,7 However, there are still many
situations where neither any ligand nor the target structure
is known. Also, there is always an interest in discovering
new ligand chemotypes to identify new modes of action or
to establish new intellectual property. Therefore, most lead-
finding projects in the pharmaceutical industry use High
Throughput Screening (HTS) methodologies. HTS aims to
examine the chemistry space experimentally in a thorough
manner for the desired activity. The size of the druglike
chemistry space, which is estimated to contain 1060 struc-
tures,8,9 prevents an exhaustive screening since the typical
size of a screening collection that a pharmaceutical company
can handle is currently in the range of 106 compounds.10 In

addition, the costs of protein production needed for screening
can limit this number still further for targets where protein
expression is difficult. In the HTS-based lead discovery
practice, one is confronted by two challenges: how best to
select from the commercially offered screening compounds
those that should be added to the corporate screening collec-
tion; and, if a complete HTS is not possible, how best to
select the subset out of the corporate screening collection,
which should be screened in a lower-throughput assay. In
the absence of additional information that can be used for
virtual screening, a frequently chosen approach is to select
a subset of maximum diversity based on chemical structure
descriptors.11-13 Furthermore, recently the aspect of molec-
ular complexity has been discussed as an important parameter
in the design of screening collections.14-18 Given the fact
that most molecular similarity measures on which diversity
selections are based are influenced by the number of bits
set in the fingerprints being compared19,20and that the number
of bits-set is a measure for the complexity of a molecule,
one may expect that diversity selection procedures can bias
the complexity of the subsets generated with them. If there
is a relationship between complexity and biological activity,
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as we have reported previously,18 one can then expect a
subsequent influence on the chance of discovering biological
activity in these subsets. In this manuscript we will compare
the bias on several molecular complexity measures resulting
from diversity selections obtained by several procedures; we
will then analyze the relation between molecular complexity
and the distribution of biological activity in the diversity
selection subsets.

EFFECT OF DIVERSITY SELECTION ON MOLECULAR
COMPLEXITY

This study was conducted on a random selection from
commercial compound vendor catalogues without any pre-
filtering steps except the elimination of such structures, for
which the generation of SMILES (Simplified Molecular Input
Line Entry Specification) failed or which contained multiple
fragments. Replicate structures were also removed. This set
comprises 191 828 unique structures. See the Supporting
Information for a list of vendor collections included.

Different diversity selection or clustering procedures were
used.

1. Diversity selection with the OptiSim algorithm21 as
implemented in the dbdiverse program from Tripos.22 This
program is based on Tanimoto similarity20 comparisons of
the UNITY fingerprints by Tripos. dbdiverse was executed
in the exhaustive mode with increasingly tight constraints
on the maximal diversity two molecules were allowed to have
(Table 1). This method is herein referred to as OptiSim/
UNITY.

2. The clustering component in PipelinePilot23 uses an
algorithm similar to Tripos’ OptiSim and is used to select a
maximally diverse subset of a given size. Each of the
structures selected in this way forms the center of a cluster,
and the remaining compounds were grouped together with
the center that is most similar to them. For our purpose of
diversity selection we retained simply the cluster centers as
they were yielded by the clustering component in Pipeline
Pilot. Pipeline Pilot has its own inbuilt circular substructure
fingerprints24 called FCFP_4, which are based on circular
substructural fragments having a maximum diameter of 4
bonds. As Pipeline Pilot does not allow the same degree of
control over the process and requires that one provides a
desired number of clusters, the subset sizes obtained with
dbdiverse as listed in Table 1 were used to request the
generation of subsets of equal size. This method is herein
referred to as OptiSim/FCFP_4.

3. The third diversity selection method is based on the
hierarchical divisiveK-means25,26clustering as implemented
by BCI (Barnard Chemical Information).27 Hierarchical

divisive K-means clustering is a hierarchical clustering
method that generates a complete hierarchy tree. From this
tree, a number of horizontal cuts were made such that the
numbers of clusters in each of the slices obtained was
equivalent to one of the subset sizes in Table 1. The
clustering was executed using the Pipeline Pilot FCFP_4
fingerprints, which were folded to a length of 2048 bits by
simple modulo division. As BCI does not output designated
cluster centers we have chosen from each cluster the member
with a median number of fingerprint bits-set in order to avoid
any size bias by the center selection procedure. This method
is herein referred to as DivKM/FCFP_4.

In addition to the choice of the diversity selection method,
it was also necessary to decide on which complexity
measures to utilize in this study. Chemists often regard
synthetic accessibility as the most important measure of
molecular complexity. Although attempts have been made
to quantify synthetic complexity, these are usually based on
some empirical scoring of structural features28 or statistical
models based on individual assessments by chemists.29 Here,
we wished to use measures based on more general structural
features that are independent from empirical parameters or
individual assessments, which can be highly variable de-
pending on the individual synthetic expertise of the chemists.
The following measures were chosen:

1. Number of non-hydrogen atoms present in the structure
as a very simple and intuitive measure.

2. Number of fingerprint bits-set in the fingerprint used
for the diversity selection. This measure was chosen for the
reason that it is the only complexity measure that is
influenced directly by the diversity selection method.

3. Number of unique Similog30 pharmacophore triplets
present in the structure. The Similog keys represent phar-
macophoric atom triplets, which are characterized by the
bond count of the shortest path between the three atoms,
and the properties of those three atoms. Four atom properties
are recognized independently from each other: H-bond
donor, H-bond acceptor, lipophilicity (recognized as the
absence of electronegativity), and the bulkiness of the
substituents. The Similog keys, as with pharmacophore keys,
are assumed to describe those aspects of structural complexity
which can be expected to be related with protein affinity.

4. The number of unique Similog pharmacophore triplets
as described above is normalized by the theoretically possible
number of atom triplets, which isN(N-1)(N-2), whereN
is the number of non-H atoms in the molecule and a constant
factor of 1/6 being ignored. This measure is herein referred
to as the Similog density.

5. The number of bits-set in the FCFP_4 fingerprint
normalized by the number of non-H atoms. This is the
appropriate normalization since circular substructures are
centered at each non-H-atom. This measure is herein referred
to as FCFP_4 density.

For the subsets generated with each of the diversity
selection methods, the distribution of the complexity mea-
sures is computed. The results are shown in Figures 1-4.
The figures show clearly that OptiSim/UNITY and OptiSim/
FCFP_4 result in a clear complexity bias toward lower
complexity when considering increasingly tight dissimilarity
criteria for all complexity measures, except the size normal-
ized Similog and FCFP_4 density. For the Similog density
OptiSim/UNITY, and to a lesser degree also OptiSim/

Table 1: Subset Size and Dissimilarity Criteria for the Subsets
Selected with OptiSim/UNITY

maximum
similarity

number of
compounds

percentage of
database (%)

1.0 191828 100.0
0.95 170655 89.0
0.88 123815 64.5
0.80 77909 40.6
0.73 48411 25.2
0.65 26511 13.8
0.58 14404 7.5
0.50 6498 3.4
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FCFP_4, a Gaussian distribution can be observed with a
higher variance compared to the whole set. For the FCFP_4
density (not shown in the figures) the behavior is similar.
The DivKM/FCFP_4 method differs from the OptiSim based
methods as it does not exhibit these effects, and the
distribution of molecular complexity remains without any
significant changes.

RELATION BETWEEN MOLECULAR COMPLEXITY
AND BIOLOGICAL ACTIVITY DETECTION IN

HIGH-THROUGHPUT SCREENING

As experimentally shown by Kuntz31 and also suggested
by the statistical model of Hann15 there is a relationship

between biological activity and molecular complexity. This
means that a complexity bias introduced by diversity
selections can have an impact on the outcome of the
screening of the selected subsets. To study the relationship
between molecular complexity and biological activity it is
necessary to use biological activity data obtained by high-
throughput processes typically used to screen diversity-
selected subsets. For this study we used the IC50 summary
data of the Novartis screening history. We selected from this
data set only such assays in which at least 1000 IC50 values
have been submitted for determination, which means that
most of the assays are HTS assays. This data set covers 160
assays representing a broad range of targets, including GPCR,
ion channels, kinases, proteases, and also whole-cell phe-
notypic assays.

Figure 1. Distribution of the number of non-H atoms in the subsets
generated with the different diversity selection methods. In the color
coding chosen, the diversity selection criterion becomes tighter,
and hence the subset sizes decrease from blue over yellow to red.
The black curve shows the distribution in the original set.

Figure 2. Distribution of the number of fingerprints set in the
subsets generated with the different diversity selection methods.
The distributions are shown for that fingerprint which was used
for diversity selection. Color coding is as in Figure 1.
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This data matrix is clearly sparse, which means not all
compounds have been measured on all assays. However, the
majority of the assays are from HTS. HTS typically pro-
ceeds in two stages. The first one is the primary screening
where the whole screening collection is assayed at a
single concentration. The IC50 (or EC50 in case of receptor
agonists) values are determined at a second stage for
compounds that exhibit activity exceeding a predefined
threshold. One could see the whole procedure as one logical
assay which returns, with some error, whether a molecule
is active or inactive with a quantified activity value. This
gives some basis to assume that all compounds without a
reported IC50 can be assumed to be inactive. It is acknowl-
edged that HTS is likely to miss some false negative
compounds; however, the outcome of an HTS is determined

by those active compounds which can be detected by the
screening procedure and should there be any impact of the
molecular complexity on the HTS outcome, it will materialize
itself in a change of the activity distribution of the detectable
compounds.

Since the screening collection has changed over time, and
also some assays are non-HTS, the general assumption that
compounds are inactive if no IC50 value is reported is more
questionable but may still be justified on the basis of the
generally low hit-rates in screens of nonfocused collections.
Ideally, any quantitative study of biological activity would
be based on the binding energy which can be determined
from the dissociation constantKD. With the approximation
of IC50 ∼ KD we can use-log(IC50) as a quantifier for

Figure 3. Distribution of the number of unique Similog keys set
in the subsets generated with the different diversity selection
methods. Color coding is as in Figure 1.

Figure 4. Distribution of the density of unique Similog keys (as
the number of unique Similog keys set normalized by the possible
number of atom triplets) in the subsets generated with the different
diversity selection methods. Color coding is as in Figure 1.
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activity. For molecules set as inactive,-log(IC50) was set
to zero.

To study the dependence of overall biological activity on
molecular complexity, the overall activity of the molecule
was set as the maximum of-log(IC50) over all assays,
ignoring any lower activity in other assays. The IC50

summary data contains only molecules that have at least
exhibited some activity in one assay, which justified their
submission for IC50 determination. While it is still possible
that there is no activity found in IC50 determination and the
molecules have been false-positives in primary screening, a
set of these molecules would not be a suitable comparison
set of inactive molecules. Therefore, we collected all
molecules that have been in the screening collection for at
least for 2 years and never found to be active in the primary
screen and used this set as the set of inactives. For this set,
and for the sets of molecules with IC50 e 10 µM, IC50 e
100 nM, IC50 e 1 nM, the distributions for different
complexity descriptors were calculated and are shown in
Figure 5. The same descriptors as in section 1 were used,
together with the numbers of non-H atoms, fingerprint bits-
set, and unique Similog keys. Although additional complexity
measures have been studied as we have reported previously,18

these exhibited less difference in complexity between
biologically active and inactive molecules.

It can clearly be seen that higher active molecules are also
more complex than the average inactive molecule in terms
of the number of non-H atoms, count of unique Similog keys,
and number of FCFP_4 fingerprints bits-set. The complexity
distribution of the inactive molecules is very similar to that
of the whole screening collection (not shown in the figures).
This suggests that there is nothing special about the inactive
molecules, but the molecules found to be active are more
complex than average. The three complexity measures are
however highly correlated (Table 2). The absolute molecular
size, measured as the number of atoms, appears to be the
main parameter influencing the affinity of the molecules to
their targets. Therefore, it is of interest to ascertain whether
the use of the numbers of FCFP_4 fingerprint bits-set and
unique Similog keys have any added value compared to the
simple atom count. To investigate this, both biological
activity and the complexity measure have been normalized
by the molecular size. The ligand efficiency as a size-
normalized measure for biological activity can be defined
according to Hopkins32 as -log(IC50)/Nnon-H-atoms. The
normalized form of the Similog and FCFP_4 complexity are
Similog and FCFP_4 density as described above. In Figure
6 the relationship between the ligand efficiency and the
FCFP_4 and Similog densities, respectively, is shown. In
both cases the ligand efficiency increases with increasing
complexity density. The structure examples in Figure 6
illustrate that ligands that contain the same structural element
repetitively are likely to have a low complexity density.

EFFECT OF DIVERSITY SELECTIONS ON
BIOLOGICAL ACTIVITY

Having demonstrated that diversity selection can affect the
complexity of the molecules in subsets obtained by their
application, and also that biological activity is related to
molecular complexity, the direct relationship between di-
versity selection and the biological activity of the selected

compounds is also of interest. To investigate this we applied
each of the diversity selection methods described earlier
(OptiSim/UNITY, OptiSim/FCFP_4, and DivKM/FCFP_4)
to the same IC50 summary data set. In addition to these three
methods which had been chosen for their capability to handle
very large data sets, we also decided to study Self-Organizing
Maps (SOMs), which are available in our company as an
intranet tool for the analysis for medium sized data sets. Our
SOM application used Radial Distribution Functions33 (RDF)
as a descriptor, which were derived from conformations
obtained with CORINA.34,35A molecule’s RDF code (eq 1)
is a smoothed histogram of all occurring intramolecular atom
distances which can be interpreted as the probability distribu-
tion of finding atom pairs of distanceR

wheren is the total number of atoms,ai andaj are atomic

Figure 5. Distribution of molecular complexity measures in sets
of molecules with increasing biological activity. Biological activity
is measured as the maximal value of-log(IC50) measured found
in the corporate IC50 summary data.

g(R) ) ∑
i > j

n

∑
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-B(R-rij)2
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properties of atomsi andj (e.g. partial chargesqtot) andB is
the smoothing factor which can be interpreted as the temper-
ature parameter defining the fuzziness of atom positions due
to thermal movement. In our experiment this fuzziness is
very important since it allows us to compare RDF codes by
calculating the Euclidean distance. In our studies we applied
the partial chargesqtot as atomic propertiesai,j. The RDF
codeg(R)was calculated in the distance range from 1 to 8.5
Å with a resolution of 0.3 Å (giving 25 real numbers). The
codes were calculated three times for each molecule. In each
run only atom pairs where both atoms have negative charges,
one atom has a positive and one atom has a negative charge,
and both atoms having negative charges were considered.
This led to three structure codes that were concatenated to
give a 75 (3 * 25) dimensional structure representation.

Training of the networks proceeded as described by
Gasteiger et al.36 SOMs consist of a two-dimensional
arrangement ofx * y connected neurons. Each neuron
consists ofz weights. The number of weightsz corresponds
to the dimensionality of the molecule representation (in our
experiment 75). During training the set of molecules is
presented to the network several times. In each iteration for
each molecule the most similar neuron, the so-called winning
neuron, is determined by calculating the Euclidean distance
between the structure descriptor and the neuron weights.
Then the neuron weights are adjusted to become more similar
to the training data. This causes similar compounds being
mapped to adjacent neurons. In case compounds are very
similar they might be assigned even to the same neuron. This
depends on the diversity of the data set, the number of
compounds, and the size of the network.

SOMs can be applied for diversity selection and have been
used in this aspect to split a data set in training and test set
for statistical models.37 A diversity selection with SOM starts
with training a network having a number of neurons
corresponding to the number of compounds that have to be
selected. After training is finished the representative com-
pound from each neuron, meaning the compound having the
descriptor most similar to the neuron weights, is collected
to create a representative subset (preserving the diversity of
the whole data set). It is not guaranteed that every cell in
the network will contain at least one compound, and therefore
the size of the subset cannot be controlled exactly. Since
the computational effort involved in training of the SOMs
increases with the number of neurons, this method is
especially suitable for creating small subsets. We used
toroidal networks of 100, 70, and 30 neurons square, creating
subsets of 7%, 3%, and 1% of the whole data set, respec-
tively. This method is referred to herein as SOM/RDF.

The distribution of the different IC50 ranges in subsets of
decreasing size obtained with increasingly tight diversity

threshold is shown in Figure 7. It can clearly be seen that
the OptiSim-based selection methods, which had shown a
bias toward selecting less complex molecules, also deplete
the fraction of highly active molecules in the selected subsets.
However, the DivKM selection method has no discernible
effect on the distribution of biological activity in the selected
subsets. It can be seen that using SOM/RDF with decreasing
subset size the number of highly active compounds increases
slightly. Since the SOM/RDF method has not been included
in the size bias study reported in the beginning of this paper,
we wanted to assess whether bias toward high activity values
can be the result of an underlying size bias. It was found
that the full subset contains on average 31 non-H atoms per
molecule, whereas the 7% subset has on average 35, the 3%
subset on average 36, and the 1% subset on average 41 non-H
atoms.

While this study does describe the effect of diversity
selection on the average activity, it does not give an answer
to the question as to whether a diversity selection has an
effect on the chance to find ligands that bind to a specific
target of interest. In an approach to answer this question we
analyzed how well the diversity selections of the IC50

summary data cover the hit lists of each individual target.
As the hit lists of the different targets were of very different
sizes, the potential results from random selections was
nonobvious. Therefore, in addition to the diversity selections
as described above (OptiSim/UNITY, OptiSim/FCFP_4, and
DivKM/FCFP_4) we used also selections of increasingly
smaller size obtained by a random number generator for
comparison. To ensure that sampling artifacts were mini-
mized from random selection, each selection was conducted
randomly five times and the results were averaged; however,
the five selections were found to have very little variance.

We used two coverage criteria. The first, very simple
criterion defines a target as covered if at least one molecule
active on the target with a given activity threshold was
contained in the diversity selection. Two activity thresholds
were used, IC50 e 1 µM and IC50 e 10 µM. The results
were not found to be dependent largely on the chosen
threshold, and thus we will describe only the results obtained
for the 10µM in the following. According to this criterion
one could reduce the data set to 4% of its initial size without
losing coverage for more than 5% of the targets (Figure 8a).
This holds for any diversity selection method, and none of
these methods yielded in this aspect better results than
random selection. The second coverage criterion was applied
to see how well the whole ligand space of the targets was
sampled by the diversity selections. According to this second
criterion a target was covered if for each of its hit series at
least one representative was contained in the subsets. A hit
series was defined as a set of molecules being active on the

Table 2. Pearson Correlation Coefficients of Molecular Complexity Measures Determined from the Novartis IC50 Summary Data

Num_atomsa Num_FCFP_4b Num_Similogc Similog densityd FCFP_4densitye

Num_atomsa 1 0.72 0.85 -0.56 -0.63
Num_FCFP_4b 1 0.77 -0.35 -0.04
Num_Similogc 1 -0.26 -0.42
Similog densityd 1 0.58
FCFP_4 densitye 1

a Number of non-H atoms.b Number of SciTegic FCFP_4 fingerprint bits-set.c Number of unique Similog keys present in the molecule.d Number
of unique Similog keys present in the molecule normalized by number of atom triplets.e Number of bits-set in the SciTegic FCFP_4 fingerprint
divided by the number of non-H atoms.
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target according to the activity threshold and sharing one
common Murcko scaffold, which is defined as the core

remaining after pruning all terminal side chains from the
molecule.38 Despite its widespread use, the Murcko scaffold

Figure 6. Relationship between maximal ligand efficiency (-log(IC50)/Nnon-H-atoms) and two density-based complexity measures. (a) Similog
density (number of Similog keys normalized by the theoretical number of atom triplets). (b) FCFP_4 density (number of bits-set in FCFP_4
fingerprints normalized by the number of non-H atoms). From blue to red the absolute activity of the ligand increases. For each measure,
some example molecules taken from commercial vendor catalogues are given, which illustrate the chemical meaning of the complexity
measures.
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definition works well only if the structures have a meaningful
cyclic core; e.g. the Murcko scaffold from molecules like
oligopeptides and their close analogues having an acyclic
core scaffold containing acyclic or cyclic side chains is often
meaningless and would lead to a high number of singleton
scaffolds. To address problems that arise from this, we
decided only to look at hit series that contained at least five
members in the original data set. In this case one sees a rather
rapid decrease in the fractions of targets covered, which is
consistently observed with an increasingly tight diversity
threshold and smaller subset size. Moreover, the fraction of
targets covered decreased faster compared to random selec-
tion when OptiSim-based selection was used. The DivKM
selection was only found to be slightly better than random
(Figure 8b). As only series of more than five were taken
into account, of which only one representative was required
to be found in the subsets, a reduction to the size of 20% of
the original set, without losing the coverage of any target, is
theoretically possible. This benchmark was not reached by
far. Reduction to 20% of the data set resulted in a coverage
of only 8% to 20% of the targets.

DISCUSSION

The most prominent finding of this article is that there
are diversity selection methods, namely those based on
OptiSim and similar algorithms, which bias the subsets they
generate toward lower molecular complexity. Interestingly,
this is more dependent on the selection algorithm, since both
of the OptiSim-like algorithms show this bias, than on the
descriptor or similarity coefficient. With the same FCFP_4
descriptor used and the same Tanimoto similarity coefficient

the divisiveK-means selection does not introduce a size bias,
whereas the OptiSim-like Pipeline Pilot clustering does. One
reason for this may be the criterion used in divisiveK-means
of which cluster should be bipartitioned in the next iteration.
Here, a decision is made solely on the size of the cluster
and not on its homogeneity. This avoids the splitting clusters
of rather dissimilar small molecules, which would then lead
to the inclusion of more of these small molecules in the
subsets, since from each cluster one sample would be taken.
Another possible explanation could be the way eachK-means
clustering step works. Rather than comparing individual
molecules by Tanimoto similarity, as with OptiSim-like
algorithms, in theK-means step each molecule is compared
with a consensus fingerprint representing the centroid of the
cluster, thus removing the Tanimoto Coefficient’s inherent
bias toward small molecules in dissimilarity-based selec-
tion.20 Coupled with the fact that highly active molecules
are also likely to be more complex than the average inactive
molecules, the decrease of complexity during diversity
selections with OptiSim-like methods results in a depletion
of active molecules in the subsets generated with such
diversity selection procedures.

The small bias of the subsets generated with SOMs, toward
higher biological activity is more difficult to explain. It is
likely to be the case that the size bias of the selection method
toward higher complex molecules is the cause of the bias in
the activity range. However, since we have no comparison
to a selection method without size bias using the RDF
descriptor, we cannot conclude this with certainty. The size
bias of the SOM toward more complex molecules can be
explained by the different distance metric used, which is the

Figure 7. Influence of the diversity selection methods on the distribution of biological activity. Depicted are the distributions of the binned
maximal-log(IC50) values of the molecules in subsets selected from the Novartis IC50 summary data file with decreasing size obtained by
using increasingly tight diversity selection criteria. The insets show the distribution of the high affinity ligands with an enlargedy-axis.
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Euclidean distance instead of Tanimoto dissimilarity. For
binary fingerprint descriptors it is known that the Euclidean
distance exhibits a higher apparent dissimilarity as the
number of bits-set increases, which is a bias in the opposite
direction to that of the Tanimoto dissimilarity.20

The bias toward lower complexity and biological activity
of the OptiSim-based methods is an unfavorable side effect
since the fraction of molecules having no IC50 below or equal
to 10µM can rise from 45% of the whole set to 70% in the
selected subset. Clearly an unwanted bias on the molecular
complexity by diversity selection is something one wants to
avoid for this reason. There remains however the question,
whether actively controlling the molecular complexity in
screening sets can be useful, and at what complexity one
should aim. The data shown here suggest at first glance that
more complex molecules may be preferable, since highly
active molecules are likely to be more complex than the

average inactive molecule. Unfortunately this does not mean
that the likelihood of a molecule being active in the first
place increases in proportion with the molecular complexity.
On the contrary, the likelihood that a molecule fits into the
receptor binding site without any feature mismatches is likely
to decrease with its complexity as pointed out by Hann,14

and the difficulty to sample chemical ligand space completely
increases with the maximum molecular size that one wishes
to include.15

In combination, these results constitute a serious chal-
lenge: in order to identify ligands in an activity range that
is suitable for the anticipated drug, we need to screen
molecules in a complexity range where it is very unlikely
that a molecule matches the binding site of a target protein
with all its features. As shown in Figure 8, diversity selection
is not a solution to this problem since the diverse subsets
cover only very few assays with all major hit series. This is
true for each of the diversity selection methods studied;
including the divisiveK-means, a selection method without
complexity bias, and the selection by SOMs that tend to have
a small bias toward higher activity compounds. There is
hardly any improvement compared to a random selection of
a subset. It can be argued that as long as one recovers at
least one hit that this will be sufficient. In this aspect all the
methods seem to perform well. However, typically the
attrition rate from a screening hit to a lead is high, and
therefore it is desirable to cover as many hit series as possible
for each assay. It should also be noted that the IC50 summary
data used here contains only assays where at least 1000
compounds have been validated, meaning that difficult assays
yielding only very few hits in the primary screening stage
have not been included. For such assays the probability that
one hit is included in a diverse subset is much smaller. Even
a moderate reduction of the compound set by the OptiSim/
UNITY diversity methods using a maximum Tanimoto
similarity constraint of only 0.80 leads only to subsets that
still contain 40% of the original set. And yet the inherent
assumption underlying all diversity selections, that all
molecules being more similar to a selected molecule than
the selected similarity constraint are equally active is, as
Martin et al. have demonstrated,2 only true for 15-50% of
the molecules having a Tanimoto similarityg 0.8 based on
the Daylight fingerprint, which is very similar to the UNITY
fingerprint used here.

This suggests that attempting to obtain a highly active
ligand in one screening run with no prior knowledge
regarding the target structure or known ligands might not
always be the optimal strategy. According to Hann’s model
the chance of finding a binding ligand are higher when one
initially aims to find a weakly binding ligand with low
complexity. There are however several examples that such
ligands have been discovered by the biophysical screening
of small molecular fragments that could then be optimized
to obtain ligands with higher activity.39-41 A further approach
is the so-called iterative or “smart” screening, where in a
first step only a subset of the compound collection is
screened. The outcome of this screen is then used to predict,
either by similarity searching or statistical models, which of
the remaining compounds are most likely to be hits.42,43Since
statistical models for activity prediction such as Bayesian
models44 are often based on molecular fragment descriptors
such as circular substructures, one can expect that a fragment

Figure 8. Coverage of the different activity types (assays) in the
Novartis IC50 summary file in found in subsets obtained by diversity
selection. Two coverage criteria were used. (a) An assay is regarded
as covered when at least one hit with IC50 e 10 µM is contained
in the subset. (b) An assay is regarded as covered if of all hit series
sharing a common Murcko scaffold having at least five members
with IC50 e 10 µM in this assay at least one representative is
contained in the subset. This implies that a reduction of the whole
set to 20% is theoretically possible without losing coverage on any
assay (green dot).
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based screen as a first iteration should be especially suitable
to predict further ligands since the contribution of a rather
isolated fragment to the target protein binding can be
observed. When building statistical models or running
similarity searches on fragment descriptors, one generally
assumes, in the absence of better knowledge, that all
fragments of the molecules are contributing to its activity.
This is however not necessarily the case, and inactive
fragments that are attributed incorrectly as active can
introduce statistical noise into the models. In molecules with
high ligand efficiency one can expect that there are less of
these noninteracting fragments present, and therefore such
molecules should be especially suitable to train statistical
models or run similarity searches. Complexity density
measures such as the Similog density or the FCFP_4 density
can help to select ligands which in the case they bind to the
target at all are likely to have high ligand efficiency.

However, realizing the potential benefits from iterative
screening and the use of individually focused compound sets
for each target, as obtained by virtual screening, poses a
challenge to current industrial HTS processes since they
require higher flexibility in the screening process, more
cherry-picking capacity to allow for a true random access
to the compound collection, and also a higher integration of
cheminformatics into the screening process.
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