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Artificial neural networks provide a powerful technique for the analysis and modeling of nonlinear
relationships between molecular structures and pharmacological activity. Many network types, including
Kohonen and counterpropagation, also provide an intuitive method for the visual assessment of correspondence
between the input and output data. This work shows how a combination of neural networks and radial
distribution function molecular descriptors can be applied in various areas of industrial pharmaceutical
research. These applications include the prediction of biological activity, the selection of screening candidates
(cherry picking), and the extraction of representative subsets from large compound collections such as
combinatorial libraries. The methods described have also been implemented as an easy-to-use Web tool,
allowing chemists to perform interactive neural network experiments on the Novartis intranet.

1. INTRODUCTION

Modern pharmaceutical research would not be possible
without the intensive application of cheminformatics.1-3 The
fact that consecutive phases of the drug discovery pipeline
become successively more expensive means that it is highly
desirable to exclude drug candidates with a low probability
of success as early as possible from the development pipeline,
while speeding up the development of more promising
compounds. Cheminformatics-based methods can support
this process by providing rational decision assistance, ranging
from the effective organization of data in corporate data
warehouses,4 supporting fast structure searching, to the
rationalization of relationships between molecular structure
and biological activity and the prediction of molecular
properties.

Pharmaceutical companies have the great advantage of
having vast amounts of in-house chemical and related
biological data from standardized assay protocols available
for analysis and model building. Depending on the avail-
ability of data for a given project, cheminformatics can
provide information in a synergistic manner that is comple-
mentary to other computational disciplines such as molecular
modeling or bioinformatics.

There are many different statistical methods used in
cheminformatics for the analysis of data. In this work, we
want to focus on Kohonen and counterpropagation (CPG)
neural networks and their contribution to the pharmaceutical
research process. We will give examples of the most
prominent and most important applications of these methods,
including the clustering of chemical structures, prediction
of molecular properties, rational selection of screening
compounds, and the creation of representative subsets from
large compound collections, for example, combinatorial
libraries.

In section 3, we will describe how this method was
implemented as a Web tool that can be used by scientists to
run and analyze interactive neural network experiments on
the Novartis intranet.

2. METHODOLOGY

Artificial neural networks (ANNs)5-7 provide a powerful
technique for modeling nonlinear relationships. Neural
networks are, therefore, commonly applied in pharmaceutical
research to analyze the complex relationships that exist
between the structure of molecules and their physicochemical
or biological properties, with the goal of identifying which
structural features are of pharmacological importance.

For this purpose, we used molecular descriptors, calculated
from intramolecular atomic distances in three-dimensional
(3D) space, to describe the 3D shape of molecules. These
descriptors allowed 3D structural information to be used as
the input required for training the neural networks.

The neural network was used to cluster the compounds in
a two-dimensional (2D) map on the basis of the similarity
(or diversity) of their descriptors. Coloring each neuron
according to the properties (e.g., physicochemical properties
or biological activity) of its constituent compounds allowed
the analysis of correspondence between the structural features
and molecular properties of the compounds. This information
can be used in the prediction of molecular properties, the
selection of compounds for pharmacological screening, and
the generation of representative subsets from large compound
collections, as described in section 3.

2.1. Radial Distribution Function (RDF) as Structure
Descriptor. Artificial neural networks require a fixed length
vector representation of the input and the output training data.
The 3D structure of a molecule, or more precisely, the spatial
arrangement of its pharmacophore features, determines the
pharmacological properties of the molecule. We therefore
used RDF8,9 molecular descriptors, which express pharma-
cophore features by coding the arrangement of atomic
properties in 3D space as a vector of real numbers.
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The RDF code (eq 1) of a molecule is a smoothed
histogram of all of the intramolecular atom distances that
occur and can be interpreted as the probability distribution
of finding atom pairs at a distanceR.

wheren is the total number of atoms,ai andaj are atomic
properties of atomsi and j (in our experiments, partial
chargesqtot were calculated using an in-house protocol based
on MPEOE), andrij is the distance between atomsi andj. B
is a smoothing factor which can be interpreted as a
temperature parameter defining the fuzziness of atom posi-
tions due to thermal movement. In our experiment, this
fuzziness is very important because it transforms the atom-
distance histograms into smoothed graphs, allowing the RDF
codes to be compared using the Euclidian distance measure.
We found that aB value of 100 provided reasonable results.
The 3D atomic coordinates were calculated using the 3D
structure generator CORINA.10

As an extension of the initial RDF code concept where
the code is calculated between all occurring atom pairs, we
calculated the RDF code three times: first, for atom pairs
where both atoms have negative charges, second, where one
atom has a negative and the other one a positive charge,
and third, where both atoms have negative charges. These
three codes were concatenated to constitute the final structure
descriptor. This was calculated for anR range of between
1.0 and 8.5 Å, which provides a good balance in describing
small molecules and not leaving out too much information
for larger molecules. For the sake of computation time during
network training in the standard mode, we calculated the
RDF code in bins of 0.3 Å. Of course, this can be reduced
to 0.1 Å or smaller if the analyzed problem requires a higher
resolution.

2.2. Artificial Neural Networks. Because the methodol-
ogy of neural networks has been comprehensively published
in journals and textbooks, we will only provide a brief
description of the neural network type used in our experi-
ments. CPG neural networks consist of a two-dimensional
arrangement ofx × y connected neurons (Figure 1, refs 6
and 7). Each neuron consists ofz weights. The number of
weightszcorresponds to the dimensionality of the molecules’

representation containing an input part (structure representa-
tion) and an output part (biological activity).

During training, the network learns inductively about the
correlation between input and output by analyzing a so-called
training set. The training set is presented to the network
several times. In each iteration for each molecule, the most
similar neuron, the so-called winning neuron, is determined
by calculating the Euclidian distance between the structure
descriptor and the input parts of the neurons. Then, the
neuron weights are adjusted to become more similar to the
training data. The winning neuron is adjusted to the highest
degree. The neighborhood neurons are adjusted also, whereby
the degree of adjustment of a certain neuron decreases with
an increasing distance to the winning neuron.

Once trained, the ANN has the ability to predict the
property for test set compounds not used during training. In
a test run, again the most similar neuron for each test
molecule is determined by calculating the Euclidian distance
between the neuron weights and the molecular descriptor.
Then, the molecular property to be predicted is looked up
in the output layer; however, unlike the training process, no
weight adjustment is performed.

3. APPLICATIONS AND IMPLEMENTATION OF A WEB
TOOL

The use of Web-based cheminformatics tools has a long
tradition at Novartis. These tools are integrated into the
company’s intranet and allow chemists to calculate various
types of molecular properties and perform molecule visual-
ization, bioisosteric design, and many other cheminformatics
tasks.11,12 To enhance this tool collection, we have also
implemented a Web tool that allows researchers to run neural
network experiments and analyze the results interactively
(Figure 2). The usage of this tool, which we call “Treasure
Island”, is very straightforward. It allows the submission of
a set of compounds as a SMILES or SD file, or as a generic
set of descriptors in text format. Advanced users also have
the ability to specify network parameters such as the size,
the number of training iterations, and so forth. Otherwise,
these parameters are provided automatically.

After the training process, results are displayed as a color-
coded map showing the distribution of the compounds among
the neurons. An important advantage of this approach is the
ability to interactively analyze the results. By moving the

Figure 1. Neural network of type counterpropagation (CPG), which consists of a two-dimensional arrangement of neurons. Each neuron
has an input part containing the structure representation and an output part containing biological activity.
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mouse over the neuron cells, the centroid compound is
displayed. By clicking on the neurons, they can be marked
and all data associated with these neurons are displayed. It
is also possible to download structures and data from certain
network regions, for example, neurons containing molecules
with high biological activity. The comparison of input and
output layers allows an evaluation of the importance of
certain input variables with regard to the output. This
information and the analysis of the network error during
training (graph in the lower left-hand corner of Figure 2)
can be used to improve the quality of the model by discarding
input variables that do not appear to be correlated with the
output property. Last, the results can be archived on the
server, documented, and shared with other scientists.

In the following sections, we summarize several examples
of where the Web-based neural network methodology has
been successfully applied.

3.1. Prediction of Biological Activity. As described in a
previous publication,13 the method was successfully used to
predict the G-protein-coupled receptor (GPCR)-ligand like-
ness of compounds by training a network with 1709 known
GPCR ligands and 24 870 common druglike molecules.

In addition to the structure descriptor (described in section
2.1), a binary classifier was appended to describe whether
molecules were GPCR substrates or not. However, the only
information used for the training was the structure descriptor.
The GPCR class information only was used for analyzing
the clustering and prediction results. Figure 3 shows the
weights from the output layer (binary GPCR classifier). We
can observe a very good clustering of the GPCR ligands with
respect to the inactive compounds. Furthermore, it is possible
to efficiently separate peptidic ligands (upper left-hand
corner) from aminergic compounds (center).

For the prediction process, test set compounds were
mapped onto the trained network and, for each of these, the
most similar neuron was determined. The weight of the

GPCR layer of this neuron constitutes the GPCR-ligand-
likeness score of the respective test set compound. Using
this approach, we were able to predict 71% of the active
GPCR compounds correctly from a data set that contained
only 5.9% of the active compounds in total.

3.2. Compound Selection for Screening.A very promi-
nent task in pharmaceutical research is the selection of
compounds for screening. Pharmaceutical companies are
regularly buying large numbers of compounds from various
commercial providers to extend their in-house collections
and to feed high-throughput screening robots. These com-
pounds are selected on the basis of various criteriasnovelty
relative to the company collection, calculated properties, and
various bioactivity models. ANNs can support this process
in two ways.

In the first case, the network is trained with a set of
compounds with known activity. The set has to contain active

Figure 2. Output page of the neural network Web tool, which features the display of chemical structures and corresponding properties and
the download of cluster results.

Figure 3. Result map, which shows a clear separation between
GPCR ligands and inactive compounds. Peptidic ligands are
clustered in the upper left-hand corner, aminergic ligands in the
center of the map.
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and inactive compounds so the network can develop a model
to discriminate between these two groups. Then, a set of
compounds with unknown activities can be mapped into the
trained network. Those compounds being assigned to neurons
containing active compounds from the training set have a
high probability of showing a similar activity and should
therefore be suggested for screening. This approach can be
applied if a number of compounds have already been
screened in a particular assay and the selection of compounds
of unknown activity (e.g., from the company’s compound
collection) are required for further screening.

A second approach can be used to select promising
screening candidates from a set of compounds with unknown
activities, for example, a large compound collection from a
vendor catalog. This compound collection is used during
training to create the initial map. A set of compounds (or a
single compound) with known (high) activity, for example,
from a publication or a patent, is mapped into the trained
network. Compounds from the initial data collection that are
located on neurons to which the active compounds were
assigned have a high probability of showing a similar activity
and are, therefore, promising candidates to purchase.

For both approaches, the quality of the results increases
with the similarity between the compounds in the (initial)
training data set and the compounds in the mapping data
set.

Both approaches are complementary, and the appropriate
approach has to be chosen on the basis of the task and the
data situation.

3.3. Selection of a Representative Subset.The neural
network methodology can also be used to select a representa-
tive subset from a large set of compounds (e.g., a collection
of several combinatorial libraries). To perform such an
experiment, the neural network was trained with the entire
compound collection. The number of neurons should be set
equal to the number of compounds that are required for
selection. If the number of molecules in the initial compound
collection is much larger than the number of neurons, usually
all neurons should be occupied by at least one compound.
If the initial set is not too large and exhibits only a low
diversity, then the number of neurons required will be higher
than the number of compounds to be selected because many
empty neurons (i.e., neurons to which no molecule has been
assigned during training) will be present. After training, the
centroid compound for each neuron is identified as being
the compound having the lowest Euclidian distance between
its structure descriptor and the neuron weights. The resultant
collection of such centroid molecules constitutes the repre-
sentative subset.

We utilized this technique to select a subset of 5000
compounds from a collection of combinatorial libraries
containing around 100 000 compounds in total. The benefit
of this approach may be seen in Figure 4, which shows how
many compounds belong to libraries, respectively selected
subsets, of certain diversity ranges. The similarity measure
applied was the Tanimoto coefficient of the molecular
fingerprints. The light gray bars show the diversity distribu-
tion of the initial library collection; the dark gray bars show
the distribution of the randomly selected subset, and the black
bars show the distribution of the subset selected with the
neural network. Figure 4 shows the distributions for sets of
libraries of low, medium, and high diversity. Additionally,

the distribution of one small and highly diverse library is
displayed. We observe that the random selection provides a
distribution very similar to the original data set, whereas the
neural network selection picks less compounds from low and
medium diversity libraries and more compounds from highly
diverse libraries. These findings are also supported by the
distribution for one small but highly diverse library where
we observe that significantly more compounds were picked
by the neural network approach than by random selection.

This indicates that the neural network approach ensures
that the selected subset covers a chemical space that is
representative of the initial large collection of compounds.
In the case of random selection, there is an increased
probability that compounds from highly diverse but small
libraries would be under-represented.

4. CONCLUSIONS

Artificial neural networks provide a wide range of potential
applications in pharmaceutical research. Typical applications
are the prediction of biological properties, the selection of
screening candidates, and the generation of a representative
subset from a large compound collection such as a combi-
natorial library.

Obviously, neural networks have to compete with other
statistical methods such as partial-least-squares analysis,
support vector machines, and nearest neighbor methods,
which might be faster while performing equally well or, in
some cases, even better. However, the big advantage of
Kohonen and CPG neural networks is that they provide quick
and intuitive feedback about the results of the cheminfor-
matics experiment, for example, about the quality of the
structure descriptors, the correlation of input and output, or
the contribution of a particular input property to the output.
This visual feedback is an important factor for the acceptance
of this method because it meets the needs of the researcher,
who is often trained to process information, like chemical
structures, in a graphical manner.
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